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ABSTRACT

As applications of digital systems continue to expand, the need

arises for better methods of analysis of functions of discrete variables.

Particularly important is the ability to gauge accurately the difficulty

of a problem; this leads to measuring a function's complexity. This in

turn requires an implementation-independent model of function evaluation,

one that also shows the contribution of individual variables to the

function's complexity.

One such model, called a decision tree, is introduced; it is

essentially a sequential evaluation procedure where, at each step, a

variable's value is determined and the next action chosen accordingly.

Decision trees have been used in switching circuits, data bases, pattern

recognition, machine diagnosis, and remote data processing. The activity

of a variable, a new concept that measures the contribution of a variable

to the complexity of a function, is defined and its relation to decision

trees is described. Based upon these results (which can be generalized

to recursive functions and hierarchies of relations), a complexity

measure is proposed. The use of that measure and of the concept of

activity in testing large systems (where a number of variables may be

inaccessible) is then examined, with particular on continuous

checking of systems in operation.
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CHAPTER 1

INTRODUCTION

As applications of digital systems continue to expand, the need

arises for better methods of analysis of functions of discrete (in

particular, binary) variables. Such functions often represent the total

knowledge available to the designer or engineer about a system, so that

their understanding is critical to the development of design methods,

cost estimates, troubleshooting procedures, etc.

Of particular importance in this regard is the ability to gauge

accurately the difficulty of the problem. This enables the system

designer to evaluate the feasibility of the project, select tools or

methods of appropriate capabilities, and evolve cost, time, and other

estimates. Thus, a crucial part of the analysis is measuring complexity,

more precisely, a function's complexity.

Such a measure can be defined experimentally, thereby relating it

directly to human experience, as is the case in software science

(Halstead 77). The development can also be analytical, based upon some

model of function evaluation; such measures often quantify the expense

of some resource present in the model, such as time and memory in

concrete complexity theory (Aho 74, Garey 79), or logic gates in

combinational complexity theory (Savage 76, Pippenger 77). These three

approaches, however, assume further knowledge about the system because

they are not implementation-independent. Moreover, they do not
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explicitly show the contribution of individual input variables to the

complexity of the function.

An inplementation-independent model of function evaluation is also

needed in computational complexity theory in order to establish lower

bounds on the amount of work required for evaluation. One such model,

which also allows an analysis of the contribution of individual variables,

is called a decision tree; it has been used to prove lower bounds on

sorting (Knuth 71), set manipulation (Reingold 72), and recognition of

graph properties (Rivest 76b). A decision tree is essentially a

sequential evaluation procedure whereby the value of a variable is

determined and the next action (choice of another variable to evaluate

or decision as to the value of the function) chosen accordingly.

Figure 1.1 shows a decision tree for sorting three elements. The

variables are all ( - 3 possible comparisons between two elements and

are binary in that the result of comparing (a:b) is either (a > b) or

(a < b). Thus, each internal node of the tree has two children,

corresponding to the two possible values of the variable evaluated at

that node. The external nodes are values of the function, in this case

permutations.

Since decision trees are models of sequential evaluation, they

have been used extensively wherever parallel or tabular data must be

converted to sequential procedures, as in decision tables (Metzner 77),

switching theory (Lee 59, Cerny 79), machine diagnosis (Chang 70), and

data base queries (Ullman 80), or when inputs are provided one at a time,

as in taxonomy (Jardine 71, Garey 72), multistage pattern recognition
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Figure 1.1. A decision tree f or sorting three elements.4

j (Sethi 77), and remote data processing (You 76). As a consequence,

decision trees have come to be known under many names and disconnected

results about them appear under many guises in the technical literature.

This work generalizes and unifies the concept of a decision tree,

presenting the first formal definition nf it. Known results are

reviewed and the various measures used to characterize decision trees

are discussed. In particular, a comprehensive analysis of the compu-

tational complexity of these measures is presented, including some

new results on the worst case testing complexity of Boolean functions.

The activity of a variable, a new concept that measures the contribution

of a variable to the complexity of a function, is defined and its

relation to decision trees is described. These results are subsequently

generalized to relations and recursivc functions. Based upon these

developments, a complexity measure for functions of discrete variables

is proposed and its use in testing large digital systems is examined.

The exposition concludes with an assessment of the work done and

recommendations for future research.
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CHAPTER 2

PRELIMINARIES

2.1. Introduction

As mentioned in the previous chapter, decision trees have been used

in a number of areas, including computer science, biology, engineering,

and management, with diverse terminology and degree of generality. The

purpose of this chapter is to provide some basic definitions and results

and to establish a unified terminology in which to express the general

problem as well as the various special cases encountered in the

literature.

Some elementary concepts from Boolean algebra, graph theory, and

concrete complexity theory are first reviewed, as they will be used

throughout the following chapters. Decision trees and diagrams are then

defined, starting with the simplest and most widely encountered family

of functions--the Boolean functions--and generalizing to (partial)

functions of discrete variables. The special cases of decision tables

and identification (taxonomy), which have attracted more attention from

researchers than any other aspect of the overall problem, are then

examined within the established framework.

2.2. Basic Concepts

2.2.1. Boolean functions

The following definitions and results can be found in any textbook

on Boolean algebra or switching theory (Harrison 65, Friedman 75).

4
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A (completely specified) Bcolean function of n variables,

f(x1 , ..., xn), is a mapping from {0, i
n to (0, 11, where {0, I}n

denotes the n-fold cartesian product of {0, 11, that is, the set of

binary n-tuples. The set of all n-tuples mapped by the function to the

value 1, ((x ., xn) f(x I, ..., x) = }, is called the set of

minterms of f. A Boolean function can be specified by describing the

mapping (giving its "truth table") or by listing its minterms; it can

also be represented by a Boolean formula, usually in terms of the three

operations of disjunction (+), conjunction ('), and complementation ().

An important canonical representation as a formula is the disjunctive

normal form (DNF), formed by a disjunction of conjunctions, where each

conjunction includes all variables and represents a minterm; this form

can often be simplified by combining conjunctions to obtain a

sum-of-products (SOP), which can be minimized (with respect to the

number of conjunctions) by the well-known Quine-McCluskey algorithm.

A function of n variables can be expressed in terms of two functions

of n - 1 variables by means of Shannon's expansion theorem:

f(X, .X) = x. • f(x I, ..., X 0, xi+ I  .... xn

+ Xi • f(xl, ... , xi_1 , 1, x i+l, xn )

for each choice of xi , 1 < i < n; this will be written

f(X *l .... Xn) " f(ximo) +  xi * f(xil)

l . .... . ... .. . .... ... i l I I lllll i I II . . . ... . ... .. II . . . . . ... I F . .. .. . . . .. ..
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A function, f(x I , ..., xn), is fictitiously dependent upon

variable xi , 1 < i < n, (or xi is a redundant variable for f) exactly

when f(xi-0) = f(xi=1). In particular, a function is fictitiously

dependent on each of its variables exactly when it is a constant; a

function with no redundant variables is called intrinsic. Since the

domain of a Boolean function of n variables has cardinality 2n and its

range has cardinality 2, there exist 2 distinct Boolean functions of

n variables; it is easily shown that almost all (in the sense of

asymptotics) Boolean functions are intrinsic.

Example 2.1. Let the Boolean function of three variables,

f(xl, x2 , x3 ), be given by the mapping:

f: (0, 0, 0) 0 0 (1, 0, 0) - 0

(0, 0, 1) 0 0 (1, 0, 1) 0 0

(0, 1, 0) 1 (1, 1, 0) 0

(0, 1, 1) 1 (1, 1, 1) 1

This function can also be represented by the list of its minterms:

{(0, 1, 0), (0, 1, 1), (1, 1, 1)} ,

or by its disjunctive normal form:

f(xI, x2, x3) - X1 X2 X3 + x1x 2X3 + X1 X2x3

IThat is, the ratio of the number of items of interest to the total
number of items tends to 1 as the total number of items grows.
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which can be simplified to yield the minimum sum-of-products form:

f(xI, x2, x3) = XlX2 + x2 x 3

It is easily verified that this function is intrinsic.

2.2.2. Trees

The following definitions and results are standard topics in graph

theory (Harary 69) and computer science (Knuth 73).

A (finite) gra2, G = (V, E), consists of a (finite) set of vertices

(or nodes), V, together with a set, E, of unordered pairs of distinct

vertices from V, called edges; if E is a multiset (i.e., elements may be

repeated), then G is called a hypergraph. A graph is called directed

(is a digraph) if each edge is an ordered pair; E is then considered as

an irreflexive relation on V x V. Let S be a set of symbols; a graph is

vertex labelled if there is a function, g: V - S; it is edge labelled if

there is a function, h: E - S.

Let e - (vi, v2 ) be an edge; then e and vI (and e and v2 ) are said

to be incident; v1 and v2 are called adjacent vertices. The degree of

a vertex in a graph is the number of edges incident with it; in a

digraph, the degree of a vertex is the sum of the in-degree (the number

of edges directed towards the vertex) and the out-degree (the number of

edges directed away from the vertex). A cycle is an alternating sequence

of three or more vertices and edges, v0, el, vi, e2, ..., v n-, en, V0 ,

beginning and ending at the same vertex, in which each edge is incident

with the two vertices immediately preceding or following it, and such
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that no two vertices are identical. A graph without cycles is called

acyclic.

A tree is a connected acyclic graph; it is easily shown that a tree

with n vertices must have exactly n - 1 edges. A rooted tree is a tree

with a distinguished vertex called the root. It is often convenient to

have a definition of a tree that introduces more structure and lends

itself to inductive proofs; a tree is therefore defined recursively as

a finite nonempty set of vertices such that there is a distinguished

vertex called the root and the remaining vertices are partitioned into

zero or more disjoint sets, each in turn a tree (called a subtree). Such

a tree can be thought of as a connected directed acyclic graph where all

edges are directed away from the root.

Thus the in-degree of the root is zero and that of every other

vertex is one. Vertices with nonzero out-degree are called internal;

those with zero out-degree are called external vertices or leaves. A

full k-ary tree is one where every internal vertex has an out-degree of

k. [This terminology differs somewhat from that of (Knuth 73)]. Vertices

adjacent to the root are called its children and the root is their parent.

Since a single path exists from the root to any vertex in the tree, the

depth of a vertex is defined as the number of edges traversed on the

path; the height of a tree is defined as the maximal depth of any vertex

in the tree; finally, the path length of a tree is the sum of the depths

of its leaves.

When the order of the children of each vertex is of importance, the

tree will be called ordered or planar (since the manner of imbedding the
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tree in a plane is then relevant). Following the convention in use in

computer science, trees will be drawn with the root at the top; in

ordered trees, subtrees will be drawn left to right.

Example 2.2. The tree of Figure 1.1 (page 3) is an ordered, vertex

and edge labelled, full binary tree. The root is labelled (a:b) and is

at depth 0; the leaves are labelled by the permutations of (abc) and are

at depths 2 and 3; the height of the tree is 3. J]

2.2.3. Concrete complexity

This section is based on (Garey 79) and uses the same terminology.

Concrete complexity theory is concerned with measuring the computational

complexity of algorithms, usually in terms of time and space.

An algorithm is a precise, step-by-step procedure (e.g., a computer

program) for solving a problem. A problem is composed of parameters of

unspecified value and a question to be answered, and is specified by

describing the nature of its parameters and the properties that its

solution must possess. An instance of a problem is obtained by providing

specific values for the problem parameters. An algorithm solves a problem

if it is guaranteed to provide a solution when applied to any instance of

the problem.

Example 2.3. The following problem is well known as the minimum

cover problem. The problem parameters are a set, S, and a collection,

C, of subsets of S (i.e., C S 2 S); the problem question asks to find the

smallest subset, C', of C such that C' is a cover for S, that is, each
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element of S belongs to at least one element of C'. One instance of the

problem is given by S - (a, b, c, d}, C = {{a}, {a, c}, (a, b, dl, (bi,

d}}, for which the solution is C' - [{a, c}, {a, b, d}}. An algorithm

to solve this problem must, for each problem instance, find the minimum

cover, C , or iepoLkr that no such cover exists (which happens whenever

C itself is not a cover). 1:

Concrete complexity theory concentrates on measuring the time

requirements of an algorithm on some reasonable model of computation,

such as a Turing machine, a register machine, or a general purpose

computer. These requirements are expressed as a function of the size of

the problem instance, that is, in a sense, as a function of the size of

the input to the algorithm. The size of a problem instance is measured

by encoding the instance in a reasonable manner (that is, in a manner

that is not artificially wasteful of space) and measuring the length of

the code.

Example 2.4. An instance of the minimum cover problem can be

encoded in binary by first giving the size of S, which takes about

log 2 ISI symbols, then coding each element of C by IS[ digits, where the

i-th digit is 1 if the i-th element of S belongs to that element of C

and is 0 otherwise. This in turn takes IcI.ISI symbols, so that the

input has size log2 Isl + ICI'ISI, which is of the order of ICI'ISI for

large sets.

The time complexity function expresses the time requirements of an

algorithm by giving, for the size of each instance, the maximum amount

of time spent by the algorithm to solve a problem instance of that size.
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Since different encodings will result in somewhat different size

measures, the function is usually expressed as the order of the rate of

growth of the time requirements. Specifically, a function, f(n), is

said to be &(g(n)) whenever there is a constant, c, such that Jf(n)j

< c'Ig(n)l for all values of n. Thus, for instance, 3n + 5 is e(n),

4n2 + n is (n 2), and 4e
n + n I0 is &(er

A polynomial time algorithm has time complexity no larger than

&(p(n)), where n is the input size and p is some polynomial function;

when the time complexity of an algorithm cannot be so bounded, the

algorithm is said to require exponential time. Polynomial time is

associated with efficient, and exponential time with inefficient,

algorithms, as is illustrated in Table 2.1, where running times are

tabulated for several time complexity functions and instance sizes,

assuming each step to take one microsecond (1 lis) on present day

computers (the upper numbers) and one picosecond (1 ps) on futuristic

machines (the lower numbers). Not only are exponential time algorithms

incomparably slower than polynomial time ones, but futuristic machines

bring only minor relief, whereas they considerably speed up polynomial

time algorithms.

It is sometimes possible to show that a problem cannot be solved in

less than G(f(n)) time, for some function f. A well-known example is

sorting, which is known to require at least 0(n • log n) comparisons for

n objects. Often, however, such results cannot be attained. In particu-

lar, there exist numerous problems for which only exponential time

algorithms are known, but which are not known to require this time
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complexity. (Indeed, very few problems of practical importance have

been shown to require exponential time, unless the solution itself takes

exponential time to describe.)

Of particular interest among the latter are problems belonging to

the class NP (for nondeterministic polynomial); those are all the

problems, the solutions of which can be verified in polynomial time.

A nondeterministic machine can solve an NP problem by "guessing" a

structure and verifying that it is a solution in polynomial time. In

particular, of course, all problems solvable in polynomial time (the

class P) are in NP. One of the most important open questions in computer

science is to decide whether P - NP or not. (The available evidence is

discouraging; many of the NP problems for which no polynomial time

algorithm is known are of great practical importance and have received

a lot of attention over the past thirty years, but to no avail.)

Example 2.5. The so-called decision problem for the minimum cover

has the same parameters as the minimum cover problem, plus a constant,

k < IdC. The question is: does there exist a subset C' of C such that

C' is a cover for S and jCfj < k? This problem is in NP since a non-

deterministic machine can "guess" a subset C' and verify in polynomial

time whether jC'j < k. Clearly, this problem is a special case of the

minimum cover problem, since the minimum cover itself must be a solution

to the decision problem, if any solution exists. l
As part of the effort to solve the question of whether P - NP,

researchers identified a class of problems that are complete for the
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set NP. That is, if any of these problems can be solved in polynomial

time, then so can all problems in NP; thus, in a sense, these problems,

called NP-complete, are the hardest problems in NP. The decision problem

for the minimum cover is an example of an NP-complete problem (Karp 72).

Since the analysis leading to the definition of NP-complete

problems was done in terms of language membership, all NP-complete

problems are decision problems, that is, they ask a question about the

existence of a particular structure. The concept, however, can be

enlarged to optimization problems, as illustrated below for the minimum

cover problem.

As seen above, the decision problem for the minimum cover is

NP-complete and is a special case of the minimum cover problem; thus,

in a sense, the latter is at least as hard as the hardest problems in

NP. Such a problem is called NP-hard. However, as will be seen, the

minimum cover problem is no harder than NP-complete problems in the

sense that, if its associated decision problem has a polynomial time

solution (i.e., if P = NP), then that solution can be used to solve the

minimum cover problem in polynomial time. Such problems are then called

NP-easy; a problem that is both NP-hard and NP-easy is termed

NP-equivalent.

That the minimum cover problem is NP-easy can be seen by using the

standard technique of an intermediate completion problem. The completion

problem for the minimum cover has the same parameters as the decision

problem, plus a "partial solution" subset, C " ex C; the question is:

does there exist a subset, C', of C such that IC2I . k, C" is a cover
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for S, and C'R C- (C' "completes" C")? This problem is clearly in

NP; moreover, the decision problem is a special case of it, where C - is

chosen as the empty set. Hence the completion problem in NP-complete.

Suppose now that P = NP, so that both the decision and the completion

problems have polynomial time solutions. Since the cardinality of the

solution set, C', is an integer between 0 and ICI, the decision problem

can be used log 2 ICI times, in a binary search over the interval, to

determine if a minimal solution exists and, if so, its cardinality,

kmin; this clearly takes polynomial time. The completion problem can

then be used, with k set to k min' to build the solution set element by

element as follows. First, let C" include a single element of C; for

at least one choice of element, C ' can be completed; keeping that

element, let now C'' include one other element of C; the process

continues until all kmin elements have been found, using the completion

problem at most

IC[ + (ICI-1) + ... + (ICI-kmin+l)

- kmin * (2-ICI+l-k mn)/2

times, again a clearly polynomial time process. Thus, the minimization

problem can be solved in polynomial time if the decision problem can;

hence it is NP-easy.
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2.3. Decision Trees and Diagrams

2.3.1. The case of completely specified Boolean functions

Definition 2.1. Let f(xI, ..., xn ) be a (completely specified)

Boolean function. If f is a constant, then the decision tree for f

consists of a single vertex labelled by that constant. Otherwise, for

each xi, 1 < i < n, f has a decision tree composed of a root labelled

xi and two decision subtrees, the first for the subfunction f(xi .0)9 the

second for the subfunction f (xil).

Thus, decision trees for Boolean functions are explicit illustrations

of Shannon's expansion theorem. This recursive definition closely

parallels that given for trees in Section 2.2.2; it defines decision

trees for Boolean functions as rooted, ordered, vertex-labelled, full

binary trees. (The choice of ordering rather than edge labelling to

distinguish subtrees is arbitrary and a matter of convenience.) To an

extent, this definition prevents redundant testing in a tree, in that no

more testing may take place as soon as the function has been reduced to

a constant.

The evaluation of a Boolean function represented by a decision tree

starts by ascertaining the value of the variable associated with the root

of the tree; it then proceeds by repeating the process, on the left

subtree if the variable was false or on the right subtree if the variable

was true, until a leaf is reached; the label of the leaf gives the value

of the function.
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Example 2.6. The Boolean function of Example 2.1 was given by

the formula

f(xI, x2, x3) = 1X 2 + x2 x3

Two possible decision trees for that function are shown in Figure 2.1.

Since decision trees are ordered, the left subtree of a node always

corresponds to the variable associated with the node being evaluated

at 0, the right subtree to the variable being evaluated at 1. Thus,

evaluation on the tree of Figure 2.1(a) for the triple of values

(0, 1, 0) would first examine variable x1 ; on finding it to be 0, it

would proceed to the left subtree, there to examine variable x2 ; since

x2 = 1, the right subtree would next be used, thereby encountering a

leaf and terminating the evaluation. The label of that leaf, 1, is the

value of the function for the given triple of values, obtained by

examining only two of the three variables; the same evaluation on the

other tree would require that all three variables be examined. The first

tree represents the expansion:

f(xI, x2 , x3) - Xl.(x 2 .0 + x2 o1)

+ Xl(x 3.0 + x3"(x2"0 + x2 ")) 

Since the root of each subtree can be labelled with any of the

untested variables, the number of possible decision trees for a given

function is in general very large. For instance, the function of

Example 2.6 has ten distinct decision trees, as depicted in Figure 2.2.
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Figure 2.1. Two decision trees for the function of Example 2.6.
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In fact, it is easily seen that a Boolean function of n variables may

have up to

n-I 2 2
(n) - 7 (n - i) (2.3.1)

i-O

distinct decision trees (n choices are possible for the root, followed

by n - 1 choices on each of the two subtrees, or (n - 1)2 choices; in

general, up to (n - k) choices are possible at depth k). This

corresponds to the recurrence relation:

(n) - n (X(n - 1)) 2 (2.3.2)

which shows that T(n) grows faster than 22n. The first few values of

TTXT(n) ar itdin Table 2.2.

Table 2.2
The Number of Decision Trees for Boolean Functions

n T(n) n XT(n)

13
1 1 6 1.65 - 1027

2 2 7 1.91 • 1055

3 12 8 2.91 • 10111

4 576 9 7.64 10 il2

5 1,658,880 10 5.84 1022 4

Not all decision tree representatives of a function are equally

desirable. Thus, several criteria have been used in order to select an
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appropriate representation; such criteria attempt to measure important

properties of decision trees, in particular their realization and usage

costs.

In the most general case, each variable has an associated testing

cost (corresponding to the time needed for its evaluation, or the actual

expense incurred at each evaluation, or some other cost related to the

determination of the variable's value) and an implementation (or storage)

cost (corresponding to the amount of hardware or memory necessary to

choose a path depending on the variable's value or to some other cost

related to the apparatus needed for decision making). If such costs

are unknown, they are taken to be unity. (A third cost may arise in

practice, corresponding to the cost of the hardware equipment needed to

obtain a value for a variable, the sensor cost. This measure has no

direct relation to the tree; it is a onetime only cost, incurred as soon

as a variable is tested somewhere in the tree, and is significant only

for redundant variables; it will be further discussed in Chapters 3 and

4.)

Based on this information, several measures have been defined on

decision trees.

Definition 2.2.

(a) The storage cost, a, of a decision tree is the sum of the

implementation costs of its nodes.

(b) The worst case testing cost, h, of a decision tree is the maximum,

taken over all the paths from the root to the leaves, of the path
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costs (where the cost of a path is the sum of the testing costs of

the variables examined on that path).

(c) The total testing cost, n, of a decision tree is the sum, taken over

all the paths from the root to the leaves, of the path costs.

(d) The normalized testing cost, H, of a decision tree is the total

testing cost divided by the number of leaves. El
When costs are unity, the storage cost reduces to the number of internal

nodes in the tree, the worst case testing cost reduces to the height of

the tree, while the total testing cost reduces to the path length of the

tree and the normalized testing cost reduces to the average path length

of the tree. The path length of the tree is itself a special case of

the tree path entropy defined in (Green 73) and the average path length

a special case of the normalized tree path entropy.

Example 2.7. Assume the following costs for the function of

Example 2.6.

storage costs xl: 1 x2 : 2 x3: 3

testing costs xl: 5 x2 : 2 x3: 6

The various measures defined above are then computed for the two trees

of Figure 2.1 (page 18) and listed below.

measure tree (a) tree (b) measure tree (a) tree (b)

8 6 node count 4 3
h 13 13 height 3 3

51 35 path length 12 9
H 10.2 8.75 av. path length 2.4 2.25



23

A given decision tree is likely to have common subtrees; those can

then be constructed just once and used on other paths of the tree,

instead of being duplicated throughout. The structure thus created is

not a tree, since the in-degree of some nodes may be greater than one;

it may be assimilated to a vertex and edge labelled, directed, acyclic

hypergraph where all the nodes have out-degree zero or two and where

there is a single node of in-degree zero (the root). This defines a

decision diagram; further requiring that there be only one leaf labelled

i (the "finish" node) yields a free Boolean graph.

By definition, then, a decision diagram is associated with a

decision tree; there is a one-to-one correspondence between the paths

in the tree and those in the diagram. Thus, all the measures of

Definition 2.2 are valid on decision diagrams, taking the same values as

on their associated trees. However, the tree storage cost, cA, is

inadLquate since it does not describe the savings resulting from the

identification of common subtrees; it is replaced by the diagram storage

cost, 8, which is defined as the sum of the implementation costs of the

diagram's nodes. When costs are unity, this reduces to the number of

internal nodes of the diagram.

Example 2.8. Consider again the function of Example 2.6; two free

Boolean graph representations, associated with the corresponding trees

of Figure 2.1 (page 18), are depicted in Figure 2.3. Diagram (a) has

8 - 6 and so does diagram (b); both diagrams have three internal nodes,

in contrast to the corresponding trees. It is clear from Figure 2.3
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x 3

0 0

0 0
x~ x 2

0 i 0 1

(a) (b)

Figure 2.3. The two free Boolean graphs of Example 2.8.

that edge labelling is preferable co (subdiagram) ordering as a means to

distinguish edges, since diagrams have a decidedly more complex structure

than trees.

Further information is often available about a function in the form

of a probability distribution on the variables' values, that is, a

function p: {0, 1}n _ [0, 1]; when the distribution is not specified, it

can be taken to be uniform, that is, each n-tuple of values is equally

likely. This distribution allows a quantitative measurement of the

average behavior of a decision tree or diagram.

Specifically, a path from the root to some node can be assigned a

probability, which is simply the sum of the probabilities of all

combinations of values that can lead to that node; thus, each path has

an expected testing cost, which is the product of its probability times

its cost. The expected testing cost, E, of a decision tree or diagram

is then defined as the sum, taken over all the paths from the root to

the leaves, of the expected path testing costs.
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When all costs are unity and the distribution of variables' values

is uniform, the information necessary and sufficient to compute all of

the various tree measures defined above consists of the number of leaves

at each depth [or, equivalently, the number of internal nodes at each

depth, since one set can easily be computed from the other (Knuth 73)].

Thus a decision tree for a function of n variables can be entirely

characterized by an (n + l)-tuple, (X0, X9 ..... n), where Xi is the

number of leaves at depth i; this notation will be called leaf profile,

by analogy with a similar notation introduced in (Miller 79). The five

tree measures defined above can then be rewritten as simple functions of

the leaf profile:

n
node count, a -

ino

height, h - max {i I Xi  0} ;

n
path length, I - [ i'Xi;

i=0

n
average path length, H = X X.

i=o

n

expected number of tests, E - Z i2-Ai
ito

The leaf profile provides more than a convenient shorthand for simple

problems; it allows a lexicographic ordering of decision trees. This,

in turn, gives rise to two other measures, the maximum profile, which

ranks as best that tree which is largest in lexicographic order (on the
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grounds that leaves should be encountered as soon as possible), and the

minimum reverse profile, which ranks as best that tree which is smallest

in reverse lexicographic order (on the grounds that long paths should be

minimized). Bo*h measures are easily generalized to nonuniform proba-

bility distributions (by replacing "number of leaves" by "probability

of leaves") but cannot be applied when nonunity costs are present.

Example 2.9. Given the function of Example 2.6, assume the

following probability distribution:

p: (0, 0, 0) - 0.10 (1, 0, 0) -* 0.05

(0, 0, 1) -* 0.15 (1, 0, 1) - 0.05

(0, 1, 0) - 0.05 (1, 1, 0) -" 0.25

(0, 1, 1) - 0.20 (1, 1, 1) - 0.15

Figure 2.4 shows the two trees of Figure 2.1 (page 18) with their node

probabilities; the expected testing cost of tree (a) is

E (a )  (0.25 + 0.25) - (5 + 2) + 0.3 • (5 + 6)

+ (0.05 + 0.15) • (5 + 6 + 2) = 9.4

while that of tree (b) is

E(b) -0.35 * 2 + 0.25 * (2 + 5) + (0.25 + 0.15) • (2 + 5 + 6)

- 7.65
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1. 1 .

0 00.5 
0.5 

0.35 
0.65X

0.35

0.25 0.25 0.3 0.2 0.25 0.4

0.05 0.15 0.25 0.15

(a) (b)

Figure 2.4. The two decision trees of Figure 2.1 with their node

probabilities.

The leaf profile of the first tree is (0, 0, 3, 2) and that of the

second tree is (0, 1, 1, 2); thus, the second tree has both a larger

leaf profile and a smaller reverse leaf profile.

2.3.2. The general case

Completely specified Boolean functions are only a special case of

the system description functions discussed in Chapter 1. In general,

the system is described by a (partial) function of discrete-valued

variables, f(x1 , ... , xn), where each variable, xi, can take on exactly

mi values, for some strictly positive integer mi; without loss of

generality, those values will be denoted 0, 1, ..., mi - 1. Those

combinations, if any, for which no mapping is specified may, by defi-

nition, be assigned any value in the range of the function. (In the

case of Boolean functions, such combinations are often termed "don't care

entries" and assigned the symbolic value 4.)
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In the obvious way, f (xi=k) will denote f(xI, .... Xi 1 , k, xi+l,

x n), 0 < k < mi; a variable, xi, will be deemed redundant if

f(x.i0) = f(xi.l) f (xi.mi=l)

where f(x ... , 1')-m f(x ,.. if either both combinations are

mapped to equal values or at least one of the two combinations has no

specified image. A function will be called constant if all combinations

of values for which a mapping is specified are mapped to the same value;

it is noted that a function, all variables of which are redundant, need

not be constant.

The following is the natural extension of Definition 2.1. To the

author's knowledge, it is the first formal definition proposed for

decision trees.

Definition 2.3. Let f(xl, ..., x n) be as above. If f is a

constant, then the decision tree for f consists of a single vertex

labelled by that constant. Otherwise, for each x., 1 < i < n, f has

a decision tree composed of a root labelled xi and mi decision subtrees,

corresponding to the subfunctions f(xi0 ), ..., f(xiwmi-l), in that

order.

The definition of decision diagrams is similarly extended.

As before, storage and testing costs may be specified as well as a

probability distribution on the combinations of variables' values. Unless

all variables are m-valued for some fixed m (in which case the decision

tree is a full m-ary tree), they will likely have different costs; thus
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the concept of leaf profile is less useful for general functions than

for m-ary (in particular, Boolean) functions. However, all of the other

measures defined in Section 2.3.1 are directly applicable to the general

case.

Example 2.10. Let f be a partial function of three variables,

f: {0, 1}2 x (0, 1, 21 {a, b, c), given by the following mapping:

f: (0, 0, 0) - a (1, 0, 0) - a (2, 0, 1) * b

(0, 0, 1) - a (1, 0, 1) - b (2, 1, 0) - a

(0, 1, 1) c (1, 1, 0) c (2, 1, 1) b

Let the variables' costs be as follows:

storage costs Xi: 1 x2 : 2 x3: 3

testing costs x1 : 5 x2 : 3 x3: 2

Finally, let the probability distribution, p, be given by:

p: (0, 0, 0) - 0.00 (1, 0, 0) - 0.10 (2, 0, 0) - 0.00

(0, 0, 1) - 0.05 (1, 0, 1) - 0.05 (2, 0, 1) - 0.20

(0, 1, 0) - 0.00 (1, 1, 0) * 0.10 (2, 1, 0) - 0.10

Three of the combinations are assigned a probability of zero; this,

however, does not imply that those events are impossible, but merely

that they are extremely rare. (This makes provision for the fact that

probability estimates must suffer from inaccuracies.) An impossible
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event (one that would result in a contradiction) will have a zero

probability and no specified mapping; for this function, (0, 1, 0) and

(2, 0, 0) can be considered impossible events, while (0, 0, 0) is merely

rare. Figure 2.5 shows two decision trees (with leaf probabilities)

and associated decision diagrams for the function. The various measures

defined in Section 2.3.1 are tabulated below.

measure a 0 h n H E

tree and diagram (a) 13 10 10 72 9 8.8
tree and diagram (b) 9 9 10 69 8.625 7.85

It is noted that a decision tree will, in general, make arbitrary

assignments of values to some of the combinations for which no mapping

was specified; in fact, it is always possible to find a decision tree

that leaves no unspecified entry for functions of binary variables.

Further generalizations to relations, recursive relations, and tree

hierarchies will be considered in Chapter 5.

2.3.3. Decision tables

The terminology used for decision tables in the following is that

of (Metzner 77).

A decision table is an organizational or programming tool. It can

be viewed as a matrix where the upper rows specify sets of conditions

and the bottom ones sets of actions to be taken when the corresponding

conditions are satisfied; thus, each column, called a rule, describes a

procedure of the type "if conditions, then actions " Usually, each

condition and action is used as a label on the appropriate row and a rule
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is spepified by entering values in the condition rows (or blanks, for

irrelevant conditions, called "don't care") and check marks (meaning

"perform") in the action rows.

Example 2.11. The following decision table describes how to spend

a Saturday afternoon in spring. It has two condition rows, three action

rows, and four rules; the first condition is a binary variable (taking

values from the set {yes, no}), while the second is a ternary variable

(taking values from the set {calm, breezy, windy}).

Raining? yes no no

Wind condition breezy calm windy

Clean basement / /

Spade garden 1
Fly kites /

with children

The four rules can be read as:

"if it is raining, then clean the basement";

"if it is breezy and not raining, then fly kites with the children";

"if it is calm and not raining, then spade the garden";

"if it is windy, then clean the basement."

A pair of rules overlaps if a combination of condition values can

be found that satisfies the condition sets of both rules. If two over-

lapping rules specify different actions, they are called inconsistent

and their table is said to be ambiguous; if they specify identical
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actions, they are termed redundant. The order in which rules appear in

the table is normally irrelevant. An exception to that case is the

so-called else rule, which always appears in the last column of the

table; such a rule has no condition entries and is to be used when no

other rule in the table can be applied.

Example 2.12. In the decision table of Example 2.11, rules 1 and 4

overlap because they are b'oth applicable when it is raining and windy.

Since they specify the same act1L6 set, they are redundant, and since

no other rules overlap, the table is unambiguous. That same table can

be rewritten using an else rule, thereby considerably simplifying it, as

shown below.

Raining? no no

Wind condition breezy calm
Clean basement

Spade garden /

Fly kites
with children

Tables with an else rule are examples of complete tables, which have

an applicable rule for every combination of conditions.

Decision tables described so far are in so-called extended-entry

form. Sometimes, however, it is required that all conditions be Boolean

variables; this gives rise to limited-entry decision tables. Although

most such tables are set up in limited format from their conception, it
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may be necessary to convert extended-entry tables to limited-entry

format; this is often done by using one Boolean variable for each value

(but one) of the multivalued variable to be replaced (Press 65). This

process results in tables where entries in one condition row often imply

(absent) entries in others; such implied entries can also be present in

any decision table and give rise to apparent (but inexistent) ambiguity.

Since the implications result from purely semantic considerations, they

cannot be detected by an automatic processor; thus, it is imperative that

they be specified whenever the table must be logically checked or

translated. The impossible combinations of conditions will then be

treated (even in tables with an else rule) as inputs with unspecified

mapping.

E'-.,le 2.13. The decision table of Example 2.12, converted to

limited entry, is shown below (with an else rule); it still has three

action rows and three rules, but now has three condition rows.

Implied entries are shown in parentheses; their absense, while not

confusing to a human, would induce an automatic processor to decide that

the first two rules are inconsistent, since both could apparently apply

when it is not raining and is calm and breezy. The contradiction

inherent in the last two conditions is of semantic origin and thus

undetectable by a machine. It is noted, however, that the specification

of implied entries in the above table is insufficient: while it
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Raining? no no

Calm? (no) yes

Breezy? yes (no)

Clean basement V

Spade garden V

Fly kites
with children

identifies the impossible combination (no, yes, yes), it fails to

identify the equally impossible combination (yes, yes, yes), which will

be erroneously included in the else rule. This suggests that logical

inconsistencies be separately listed; for instance, the above table would

be supplemented by the logical expression NOT (breezy = yes AND calm

= yes). 11

Further information about the table is often provided in the form

of implementation and testing costs for the conditions and a probability

distribution on the rules; when all rules are simple (that is, each

applies to a single combination of conditions) and the table is complete,

this distribution is equivalent to one specified on the combinations of

conditions.

It should now be clear that an unambiguous extended-entry decision

table is a special case of a partial function of multivalued variables,

where the conditions correspond to the variables and the sets of actions

to the function values. In particular, a complete decision table

corresponds to a completely specified function, and a limited-entry
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decision table corresponds to a function of binary variables. An

ambiguous decision table can be assimilated to a relation, a case

discussed in Chapter 5. A decision tree representation of a decision

table, usually called a sequential testing procedure, is then of

particular importance, as it corresponds to an implementation, usually

in software, of the decision table. Indeed, the importance of the

limited-entry format is in good part due to the ease of programming

binary decisions (by if-then-else constructs).

2.3.4. Binary identification problems

Identification is, of course, a fundamental problem in many human

endeavors. Of particular interest is the situation where an unknown

event or specimen is to be classified into one of a finite number of

categories, based upon the outcome of a number of tests. [This is a

special case of the concept of questionnaire (Picard 72).] Such problems

arise in biology, medical diagnosis, machine troubleshooting, and

numerous pattern recognition applications. A binary identification

problem includes only binary tests.

Formally, a binary identification problem [as defined in (Garey 72)]

consists of:

- a finite set of objects (or categories), {O1, ... On}, which

represents the universe of possible identifications;

- an optional probability distribution function on that set of

objects (if absent, the distribution is taken to be uniform);



37

- a finite set of tests (or questions), {Q1 9 ... QM}, each of

which is a subset of the set of objects (thereby listing the

pussible identifications for the unknown object as determined by

a positive answer to that particular test);

- optional sets of storage and testing costs associated with the

set of questions (when unspecified, costs are taken to be unity).

In most cases, the size of the set of objects, n, is larger than the

size of the set of questions, m. A solution to such a problem is an

identification procedure, that is, a decision tree where internal nodes

are associated with questions and leaves with objects.

Example 2.14. Let a binary identification problem be given by a

set of four objects, 2'1, 03 041, with respective probabilities,

(0.1, 0.2, 0.3, 0.4), and a set of three tests, {QI Q2, Q3}, with

Q1 . {Olt 02}, Q2 - (O1' 04}' Q3 ' {04}, and unity costs. Two

identification procedures for this problem are shown in Figure 2.6.

Q Q3

0

0

02 0

(a) (b)

Figure 2.6. The two identification procedures of Example 2.14.
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An identification problem is clearly a special case of a partial

function of binary variables, where the questions correspond to the

variables and the objects to the function values. In fact, a binary

identification problem corresponds to an injective and surjective

partial function, since exactly one combination of variables' values

is mapped to each object.

As a result, decision trees for binary identification problems

have a fixed number of leaves (one per object) and thus of internal

nodes (since the number of internal nodes of a full binary tree is one

less than the number of its leaves). Since no two leaves are identical,

there can be no common subtrees, so that decision diagrams for identi-

fication problems are decision trees. Another consequence is that,

when storage costs are unity, all decision trees for the problem have

the same tree (and, of course, diagram) storage cost (the number of

objects minus one).

Example 2.15. The various tree and diagram measures defined in

Section 2.3.1 are tabulated below for the two trees of Figure 2.6.

measure a h l H E

tree (a) 3 3 2 8 2 2
tree (b) 3 3 3 9 2.25 1.9

Thus, the second tree has a lesser expected testing cost than the first,

even though its height is greater and its root is associated with the

redundant variable, x3 (which the first tree does not test at all). It

is noted that H is in constant ratio to n, since the number of leaves

now,
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is constant. If it is now assumed that the probability distribution is

uniform, then E becomes equal to H, so that only three essentially

different measures are left (not counting the profiles): cc, h, and E.

[



CHAPTER 3

SURVEY OF PREVIOUS WORK

3.1. Introduction

The choice of decision trees as models of functions of discrete

variables raises several questions. First, does this model capture

important aspects of functions that are not reflected in other models

(such as Boolean calculus for logic functions)? Next, since several

measures have been used on decision trees, what can be said of those

measures when applied to functions, and how can optimal tree represen-

tations be developed? Finally, is it possible to develop from the

model a measure of complexity (as independent of the model as possible)

and to apply it to practical problems?

Since decision trees can be regarded as sequential evaluation

procedures, most of the published results about them concern the

conversion of parallel data to optimal and suboptimal decision trees.

Three principal lines of investigation have progressed independently so

that efforts have often been duplicated. In the following sections, each

area will be reviewed separately; however, connections will be explicitly

mentioned and all cases will be expressed in the general framework

introduced in Section 2.3.

The problem of converting a discrete function to an optimal decision

tree is a difficult one and its exact complexity remained unknown for

years; therefore, both optimal and heuristic, suboptimal algorithms

40
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abound. Only the most significant will be reviewed here; as will be

seen, they are representative of a very few basic techniques which, with

slight variations, comprise almost all of the proposed algorithms. The

case of binary identification, as found in taxonomy and machine diagnosis,

is first reviewed, since it constitutes a rather restricted subproblem

and also because it was the first to be investigated. [Indeed, the use

of decision trees in biology--where they are called diagnostic keys--is

thought to go back to Aristotle and Theophrastus (Morse 71)..] The

conversion of decision tables to computer programs, which has engendered

a wealth of articles, is surveyed next. The more general problem of

representing discrete functions by decision trees and diagrams, which has

been studied in the context of switching theory, pattern recognition, and

concrete complexity theory, is then reviewed. The various findings are

regrouped in a short summary of the "state-of-the-art" knowledge about

decision trees.

3.2. Diagnosis and Identification

The simplest form of sequential evaluation is a linear sequence

where, at each step, only one path leads to another test. This

corresponds to a degenerate tree with a number of internal nodes equal

to its height. Finding an optimal tree then reduces to choosing one of

the test sequence permutations; moreover, tne only applicable criterion

is the expected testing cost. Variants of this problem were studied by

(Johnson 56, Hoehn 58, Riesel 63, Slagle 64, Hanani 77), who gave simple

necessary and sufficient conditions for an ordering (in terms of the
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ratio of cost to probability) that minimizes the expected testing cost

(or time).

In a typical application to machine diagnosis or specimen

identification, many more variables are considered than are needed to

distinguish all values. Thus, it makes sense to attempt to minimize

the size of the set of variables (or its cost if sensor costs--as

defined in Section 2.3.1--have been specified). This corresponds to

finding a tree of minimum height when the order of testing is constrained

to be the same on all branches of the tree; the corresponding decision

problem was recently proved to be NP-complete (Garey 79, p. 222). [Thus,

the simple exhaustive search method proposed in (Willcox 72) is not much

worse than what might reasonably be expected.] The complexity of an

optimal algorithm was recognized early and a heuristic selection

criterion developed (Gyllenberg 63, Chang 65, Chang 70). According to

this criterion, the first variable selected is that which gives rise to

the largest number of pairs of values; since this happens when the set

of values is divided into subsets of most nearly equal sizes, this is an

example of a splitting algorithm. Once a variable is selected, the same

computations are carried out independently on the resulting subsets and

the results added to determine the next variable to be selected. The

criterion was enlarged in (Chang 65) to include the case of arbitrary

partial functions of binary variables; in this case, only the pairs of

distinct values are tallied. No results were published on the performance

of this selection algorithm.
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It is noted that this criterion is easily extended to take into

account sensor costs by using the ratio of the number of pairs of

(distinct) values to the sensor cost as the critical measure.

The problem of constructing optimal binary identification trees was

first seriously considered in (Brulg 60, Kletsky 60). In the first

paper, the number of different decision trees (called sequential test

diagrams) for n objects with all 2 - 1 binary tests available was

estimated to be of the order of 1.78n * n' and that of distinct leaf

profiles with n leaves of the order of 1.84n (although the concept of

leaf profile was not mentioned). The authors also defined the expected

and worst case testing costs, E and h; in particular, they showed that

when all 2n _ 1 tests are available and costs are unity, the tree

corresponding to the Huffman code (Huffman 52) minimizes the expected

testing cost [a result previously derived in (Zimmerman 59)].

The analogy with coding and information theory was further pursued

in the second paper, where the entropy of a function was defined.

Expressed in the notation developed in Section 2.3, the entropy of any

partial function of n variables, f(xI , x.., xn), is the quantity:

H(f) - - I p(f - v) • log2p(f - v)

v

where p(f - v) is the probability that f takes the value v (i.e., the

sum of the probabilities of all n-tuples, (xl, ..., xn), that are

mapped to v) and the sum is taken over all values, v, in the range of f.

The entropy of a function can be considered as expressing its initial
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ambiguity or its information content [as in (Rescigno 61), where it is

called "repartment"]. The authors then proposed to rank the variables

of a function by the ratio of the ambiguity they remove to their cost,

where the ambiguity removed by a variable, xi, which takes on m* values,

can be expressed as:

m i-i

H(xi) = - 0 P(x i = j) • 1og2P(x i  j)

Thus, the ambiguity removed by a variable also has the form of an

entropy; indeed, it was independently derived as an entropy function in

(Mandelbaum 64).

Using the removed ambiguity per unit cost as a selection criterion

in consLructing decision trees yields the information algorithm, of

which a large number of published heuristics is a special case. In

particular, when costs are unity and the probability distribution is

uniform, the information algorithm chooses that variable which partitions

the image of the function into the most nearly equal subsets; this is

recognized as a special case of the splitting algorithm. Numerous

publications make use of one or the other of these algorithms, with

appropriate modifications, to solve problems in machine diagnosis and

biological classifications (La Macchia 62, Winston 69, Pankhurst 70,

Morse 71, Gower 72). However, no analysis of the criteria was published

until 1974, when (Garey 74) showed that the ratio of the expected testing

cost of a tree constructed by the splitting algorithm to that of an

optimal tree could be arbitrarily large, even in the case of uniformly
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distributed objects. [For n objects the ratio can be as large as

1og2n/log2 1og 2n; if arbitrary probability distributions are allowed, the

ratio can be at least n (Garey 80)]. This disproved a longstanding

conviction that the splitting algorithm was optimal for uniform distri-

butions, as quoted in (Brul 60, Kletsky 60, Osborne 63). However,

(Hung 74) showed that the splitting algorithm is asymptotically optimal,

in the sense that, as the number of variables grows, the expected value

of the ratio of the cost of the trees constructed by the splitting

algorithm to that of the optimal trees converges to one.

Algorithms for constructing a decision tree with minimal expected

testing cost were presented in (Garey 72, Misra 72) (the first for binary

tests, the second for multivalued tests). Both algorithms make use of

dynamic program ing and may require time exponential in the size of the

input (in contrast to the quasi-linear splitting and information

algorithms). There is, however, little likelihood of improvement since

the decision problem associated with the construction of optimal decision

trees for partial bijective functions is now known to be NP-complete

(Hyafil 76, Loveland 79).

3.3. Decision Tables

The conversion of decision tables to computer programs using decision

trees has been the subject of numerous articles over the past fifteen

years. However, a majority of these articles repeat the results presented

in others or contain erroneous statements (often masked by a different--

and sometimes cryptic--notation). Consequently, only those articles of
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actual or historical importance will be reviewed. Further references

are available in the book by (Metzner 77), the survey paper of

(Pooch 74), or the special issue of SIGPLAN Notices (September 71).

The subject was first studied in (Montalbano 62). Two desirable

objectives are mentioned, namely minimizing storage cost and expected

testing cost; to that effect, two heuristic selection strategies are

presented. The first strategy selects variables which tend to maximize

the profile of the tree by reaching leaves as soon as possible; this is

claimed (erroneously, as will be seen in Chapter 4) to minimize storage

cost. The second rule (called "delayed rule") is intended to minimize

the expected testing cost by selecting at each step that variable which

divides the decision table into most nearly equal subtables; hence, it

is a special case of the splitting algorithm. This rule was refined in

(Pollack 65) to take into account the fact that several tables may

represent the same decision process; it was proposed to minimize the

number of rules leading to the same set of actions by the Quine-McCluskey

algorithm, thereby yielding a minimal equivalent table (which, however,

is still not unique). The author overlooked the fact that the

Quine-McCluskey algo-ithm requires exrponential time [in fact, the

minimization of a limited-entry decision table or of a Boolean formula

is an NP-hard problem (Masek 80)], so that his suboptimal algorithm

requires exponential time, just like an exhaustive search for the optimal

tree. The same oversight can be found in several otherwise important

articles (Ganapathy 73, Shwayder 75).
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Pollack's algorithm for minimizing the expected testing cost

consists of several rules of thumb, which are roughly equivalent to the

information algorithm. This was recognized by (Shwayder 71), who

proposed entropy as a selection criterion for limited-entry decision

tables with one rule per action set; the full information algorithm was

presented in (Ganapathy 73, Shwayder 74). Unfortunately, both authors

use the decision table rather than its underlying function as a basis

for the algorithm; in consequence, there are problems of nonuniqueness

of representation and of table minimization.

Further heuristic selection rules for minimizing the expected

testing cost were presented by (Verhelst 72, Sethi 80). The first author

based his criterion on a lower bound estimate, later shown to be incorrect

(King 74), while the second author used a one-step look ahead with what

amounts to an information algorithm.

Montalbano's "quick rule" for minimizing storage cost was also

successively refined by several researchers., In (Rabin 71), it is

proposed to select that variable which results in a minimum number of

rules being split; this requires that a minimal disjoint table be first

obtained. The idea is extended to multivalued conditions in

(Michalski 78), and refined by considering the minimum number of disjoint

rules necessary in the original table and that necessary for the sub-

tables determined by the variable under consideration. Neither author

discussed the problem of generating an equivalent table with a minimum

number of disjoint rules; this is again a fatal flaw, since that problem

is itself NP-hard. A similar analysis was performed in (Yasui 71,
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Yasui 72) for limited-entry tables; it was showed chat, when applied to

limited-entry tables with n conditions and unity storage costs, this

selection algorithm (called iterated local minimization) may construct

a tree with at least 2n- 4 more nodes than the optimal tree; a comparison

with Montalbano's original strategy showed that each algorithm can

construct trees with 2n - 4 more nodes than those constructed by the other.

The first thorough analysis of the conversion of limited-entry

decision tables to decision trees and diagrams was a two part article by

(Reinwald 66, Reinwald 67), whose excellent work was unfortunately

illserved by an exceedingly complex notation. In the first part, the

authors derived a lower bound on the expected testing cost of partial

decision trees as a function of the variables already tested (which will

be further examined in Chapter 5) and used it as the basis for a fast

suboptimal strategy (of local optimization) and for an optimal seeking

branch-and-bound procedure (which, unfortunately, may require exponential

time). In the second part, a simple lower bound on the storage cost of

a partial decision tree was derived in terms of the irredundant conditions

and used again for a fast local optimization procedure and a (sometimes

exponential) branch-and-bound algorithm; the authors further showed how

to modify the branch-and-bound criterion to obtain decision diagrams

with minimum storage cost. This latter procedure remains to this date

the only one applicable to decision diagrams. It is noted that, in

both papers, the authors used a table where all rules are simple, which

is equivalent to giving the mapping of the underlying function. This

guarantees that the table has a unique representation and avoids the

need for minimization.



49

The problem of converting limited-entry decision tables to optimal

decision trees finally received an efficient solution in 1973 with the

publication of a dynamic programming algorithm (Bayes 73). This

solution was independently rediscovered by (Schumacher 76) who generalized

it to extended-entry tables; a somewhat faster version (due to the-use of

added heuristics inspired from game trees) was recently published

(Martelli 78). As is the case for dynamic programming solutions, the

algorithm builds the optimal tree from the leaves up by identifying

optimal subtrees; it is thus applicable to any criterion of optimality

with the property that an optimal solution must have optimal subsolutions.

In particular, it can be used to find the optimal trees with respect to

the tree storage cost, the expected and worst case testing costs, and

the minimum reverse and maximum profiles, but not with respect to the

diagram storage cost nor with the total and normalized testing costs.

The running time of the algorithm is of the order of the number of

possible nodes that are examined, where each node corresponds to a

combination of tested and untested variables. For a function of n k-ary

variables, there are (k + 1)n distinct nodes and generating them from

the bottom kn nodes (all variables tested) to the top node (all variables

untested) requires a number of steps equal to:

nn-in-(n ) n. . -  -n  (k + )n - 1
i- 1

since a node with i untested variables has i possible parents (each with

one more untested variable) and can be chosen in () kn- i ways. Since
2.
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the input is of size I = t(kn), the dynamic programming algorithm

/logk (k+l)
requires O I k.logl) and is thus very efficient. (For binary

variables, the complexity is &(1 1 585 .iogl); when k becomes very large,

the complexity converges to &(I'logl).)

None of the heuristic or optimal algorithms mentioned above is

directly applicable to ambiguous decision tables. The problems posed by

these tables were analyzed in (King 73), who concluded that a pair of

inconsistent rules could be taken to mean that both action sets should

be applied, or either one, in an arbitrary manner. As will be seen in

Chapter 5, this behavior can be characterized by using relations instead

of functions in the description of decision tables.

3.4. Representation and Evaluation of Functions

Decision trees can be used as representations of functions for

purposes of software or hardware implementation, or as an analytical

tool. Some of those applications will now be reviewe.d.

Since a k-ary decision tree is the exact equivalent of a hardware

multiplexer tree, it is possible to synthesize any function of k-ary

variables with only one type of element--a k-to-one multiplexer; the

resulting circuit will have few interconnections and will lend itself

well to large scale integration. Moreover, some multiplexers may feed

several others (have more than one "parent") to form a multiplexer

network, the equivalent of a decision diagram. This has attracted

researchers in switching theory, who studied the problem of minimizing

the number of multiplexers (that is, the number of nodes in the tree) or
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the worst case propagation delay (that is, the height of the tree). An

algorithm to minimize the size of a multiplexer tree was presented in

(Mange 78, Cerny 79); however, it necessitates the generation of all

implicants of the function as well as of their subsequent combinations

in order to find the optimal solution and thus requires exponential

time. The same idea appeared in (Davio 77) for the minimization of the

height of the tree. Both approaches were regrouped and generalized to

k-ary functions in (Thayse 78).

Since decision trees modeI multistage decision processes, they have

found widespread applications in sequential pattern recognition.

Although a tree is often synthesized directly from the problem without

attempt to optimize its cost (Rounds 79, You 76), there have been a few

studies of the optimization problem. An approach using game tree

searching techniques was proposed in (Slagle 71), who noted that this

approach can be modified to yield optimal dynamic programming or

branch-and-bound algorithms. The heuristic procedure presented in

(Sethi 80) for decision tables had first been designed for pattern

recognition purposes (Sethi 77). More importantly, a dynamic programming

algorithm similar to those of (Bayes 73, Schumacher 76) was published

by (Meisel 73) [and later refined by (Payne 77)]. This algorithm takes

a multivalued function as input and produces a binary decision tree

optimal with respect to expected or worst case testing cost, or storage

cost, or any weighted combination of those costs.

The evaluation of Boolean functions using decision trees with an

eye toward software implementation has given rise to several optimal and
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heuristic algorithms. A selection criteria similar to that used in

(Cerny 79) was proposed in (Halpern 74a, b); it necessitates the

generation of all prime implicants for the function and its dual (hence

requiring exponential time), implicants which are then ranked in terms of

their probability to cost ratio (where the cost of an implicant is that

of the optimal tree for it). Variables which appear in both the best

implicant for the function and that for its dual are then selected. The

author shows that this strategy is optimal for symmetric functions (those

that remain invariant under any permutation of the variables), but offers

no analysis of performance in the general case. (Breitbart 75a) presented

a heuristic selection rule fcr monotone Boolean functions with unity costs

and uniform probability distribution, which requires to find the minimal

sum-of-products form (known to be unique fir monotone functions) and is

thus exponential time; in a later analysis (Breitbart 78), it was shown

that trees constructed by this rule can have an expected number of tests

at least (n/log n) times larger than the optimal trees for functions of

n variables. The same authors also adapted the work of (Reinwald 66) to

Boolean functions (Breitbart 75b); their article contains a theorem

relating Chow parameters to the expected testing cost of a decision tree

(which will be further examined in Chapter 5) and provides most of

Reinwald and Soland's results in a much more readable form. In the

special case where the function is composed of a disjunction of disjoint

functions, (Perl 76) showed that testing all functions in some fixed

order is no worse than changing the order of testing on some paths,

thereby generalizing some results of (Slagle 64).
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The worst case number of tests (the height of a tree) indicates a

minimum number of operations that must be performed in order to compute

a function; as such, it is a useful technique for deriving lower bounds

to be used in concrete complexity theory. Of particular interest is the

worst case behavior of Boolean functions. A function is said to be

exhaustive if every tree for the function has a path on which all

variables are tested; (Rivest 76a, b) proved that almost all (in the

sense of asymptotics) Boolean functions are exhaustive. (The proof

will be presented in Section 4.3.3 along with some new results on

exhaustiveness.)

Lower bounds are also helpful if one is to compare decision trees

with other representations of functions. In a fundamental paper,

(Lee 59) introduced binary decision diagrams (which he called binary

decision programs) and compared them to Boolean formulae as means of

representation of Boolean functions. Using an ingenious proof technique,

he was able to show that no Boolean function of n variables needs more

than 4 • 2n/n - 1 diagram nodes and that some require more than

1/2 • 2n/n nodes. (A straightforward extension of his proof shows that

the number of diagram nodes needed to represent any k-ary function of

n variables is bounded below by kn/kn and above by 2 • kn/n, for k > 2.)

By contrast, it is well-known (Savage 76) that a Boolean formula may

require up to (2 n/log n) operators for a function of n variables;

moreover, every operation must be carried out at each evaluation of the

function, so that the expected number of operations needed to evaluate

na Boolean formula is G(2 /log n) while a decision diagram will never
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need more than n comparisons. The author justly concluded that binary

decision diagrams should be further investigated as efficient repre-

sentations of Boolean functions. Some of the interesting properties

of decision diagrams and trees were independently rediscovered by

(Prather 78) (who called them atomic digraphs) and (Akers 78a, b),

who investigated their use in testing switching circuits. (This will

be further pursued in Chapter 6.)

Finally, a decision tree can be used to model the control structure

of a program (Prather 78), in particular in relation with Ianov's

schemata (Ianov 60). It then becomes important to recognize identical

structures, that is, to decide whether or not two free Boolean graphs

are equivalent (i.e., represent the same function). (Fortune 78) showed

that this problem is NP-complete; however, (Blum 80) provided a

probablistic algorithm that solves the problem in polynomial time.

3.5. Summary

Most of the results available about decision trees as representations

of discrete functions concern algorithms for constructing optimal or

suboptimal trees. Two types of optimal algorithms have been published.

The first uses branch-and-bound techniques and is applicable to all

optimality criteria for which some kind of lower bound can be derived;

the second uses dynamic programming and is applicable only to criteria

that are "compatible" with decomposition in that optimal solutions must

have optimal subsolutions. Numerous suboptimal algorithms have been

proposed, all of which can result in trees that are arbitrarily far from
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the optimal. Most of these rules fall into one of three categories,

namely, the splitting strategy, the information algorithm, and the

local minimization (using a lower bound).

The problem of constructing optimal decision trees is known to be

NP-hard (for most criteria) in the case of binary identification. In

the general case, a dynamic programming algorithm is available, which

provides an efficient solution (less than (s 2) for input of size s).

2The three main heuristics are of complexity d(s • log s) or O(s ), but

several others have exponential complexity due to the incorporation of

an NP-hard problem (such as minimum cover or minimum sum-of-products

form).

Much less attention has been devoted to finding general

characteristics of tree and diagram representations of functions. It

is known, however, that almost all Boolean functions are exhaustive,

that is, have tree representations of maximal height. Further, it has

been shown that at most Y(2n/n) nodes are needed in a decision diagram

to represent any Boolean function of n variables (versus 0(2n/log n)

operators in a Boolean formula), which can then be evaluated in 0(n)

comparisons (versus 0(2n/log n) operations with a Boolean formula).

Most of the work done has been in relation with Boolean functions

and it must be noted that an important subset of the results do not

generalize to multivalued functions.



CHAPTER 4

MEASURES AND OPTIMIZATION PROBLEMS

4.1. Introduction

The use of decision trees as models of discrete functions presents

a problem of uniqueness of representation, since a given function has,

in general, numerous decision tree representations. As indicated in

Section 2.3, several criteria have been proposed to select a standard

(optimal) representation; however, the construction of this standard

tree may be quite a complex problem for several criteria. Moreover,

there is a fundamental question of choice, since at least seven criteria

have been defined.

The complexity of the optimization problem for the diverse criteria

and types of functions has received rather limited attention, as

mentioned in Chapter 3. The decision problem for each of the seven

criteria is easily seen to be in NP. The exact complexity of the

decision and optimization problems will be discussed in this chapter.

The choice of a criterion has rarely been discussed in the

literature. Most researchers used the expected testing cost or the

storage cost as corresponding to demands on time and memory, respectively,

in software implementations. (Verhelst 72) argued that the storage cost

is rather unimportant, but did not further justify his use of the

expected testing cost. The question was avoided in several articles

(Yasui 71, Payne 77) by proposing to find a tree representation that

would simultaneously satisfy a few criteria. This approach, however, is

56
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inapplicable since, as will be shown in the following sections, almost

all the proposed criteria are incompatible in the sense that they cannot

be optimized simultaneously. This chapter investigates the relationships

between the various measures and discusses the merits of each; it shows

that only one criterion satisfactorily reflects the complexity of

decision trees.

4.2. The Case of Binary Identification

The various applicable measures will be first examined under the

assumption of unity costs and uniform distribution of objects. Under

those conditions, the storage cost of a tree reduces to its number of

nodes (which is fixed, as noted in Section 2.3.4), and its expected

testing cost is equal to its normalized testing cost, of which the path

length is a fixed multiple; hence, only four criteria are applicable,

namely, the height, the path length, and the minimum reverse and

maximum profiles.

Proposition 4.1. The maximum profile is incompatible with the

other three measures.

Proof: Consider the identification problem with five objects,

{a, b, c, d, e}, and four tests, {T1 - {a}, T2 - fa, b}, T3 - (a, b, c),

T4 w fa, b, c, d}}. The trees with maximum profile test T1 or T4 first,

while those optimal with respect to the other three criteria test T2 or

T 3 first, with the resulting measures listed below.
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first test leaf profile height path length

T1 or T 4  (0, 1, 1, 1, 2) 4 14
T2 or T 3  (0, 0, 3, 2, 0) 3 12

It is further noted that the function used in the proof also has trees

rooted in T1 or T4 with a leaf profile of (0, 1, 0, 4, 0) and thus a

height of three and a path length of thirteen; hence, minimizing the

height of a tree does not result in the optimization of any other measure.

(On the other hand, it is obvious that minimizing the reverse profile

will minimize the height.) The known relationships between the four

measures are summarized in Figure 4.1, where the empty set symbol, ,

means that the corresponding measures are incompatible (that is, that the

set of all trees optimal under one criterion has no intersection with

that of all trees optimal under the other criterion). The exact

relationship between the reverse profile and the path length is unknown.

It is easy to construct an example showing that they are not strictly

equivalent, in the sense that the set of all trees for the example does

not get ranked in the same order by both criteria; however, this author

was not able to construct a problem where the optimal trees for both

criteria did not coincide.

The introduction of nonuniform probabilities results in further

incompatibilities and one more measure (the expected testing cost); in

fact, the only two measures that are not incompatible are, trivially,

the reverse profile and the height. Storage and testing costs invalidate

the use of leaf profiles, but give rise to another valid measure (the

tree storage cost); all measures are then pairwise incompatible.



59

h .=7'>
mmn

minimum ==>
reverse profile

<=
profile

nmin  hmin min.
rev.prof.

Figure 4.1. Known relationships between the four measures
applicable to binary identification trees.

The decision problem for the path length measure was shown to be

NP-complete in (Hyafil 76), even with unity costs and uniform distribution.

Their construction [a straightforward reduction from the exact cover by

three sets--see (Garey 79, p. 53)] can be used to show that the decision

problems for the reverse profile and the expected and worst case testing

costs are also NP-complete. Using standard completion and search

techniques (as developed in Section 2.2.3), it is an easy matter to show

that the optimization problems for the storage cost and the total (and

thus also normalized), expected, and worst case testing costs are all

NP-equivalent. The optimization problem for the reverse profile is not

known to be NP-easy: although one can apply the completion technique,

a binary search (required since the number of distinct profiles grows

exponentially -ith the number of leaves) would necessitate a polynomial

time ranking algorithm for leaf profiles, which is as yet undiscovered.

Table 4.1 summarizes the known results about the complexity of decision

tree optimization in binary identification problems.
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Table -4.l
The Complexity of Optimal Binary

Identification Trees

rev. max.CrtrinH. E h. prof. prof.Criterion Amin min ,Hmin Emin hmin po rf

Complexity NP- NP- NP- NP- NP-
equivalent equivalent equivalent equivalent hard

4.3. The Case of Completely Specified Boolean Functions

4.3.1. Relationships between measures: conjectures and counterexamples

The relationships betwen the various measures will be examined in

the simplest (and least conducive to incompatibilities) case, where all

costs are unity and the probability distribution on the input combina-

tions is uniform. All of the eight measures defined in Section 2.3.1

are then applicable.

Proposition 4.2. The maximum profile is incompatible with any

other measure.

Proof: Two counterexamples will be used. First, let f be thea

Boolean function of four variables given by the formula:

fa (X, x2, x3, x4  Xx3 + X1x2 X4 + x2 x3x4

The trees with maximum profile use as first test either x1 or x3 and

also have minimal expected testing cost; the optimal tree for all other

measures, however, tests x4 first and is unique (except for the minimum
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diagram storage cost, which can also be attained by testing x1 or x3

first, but with a structure different from that of the maximum profile

trees). The various measures for the three types of trees are listed

below:

first test profile cci mn n Hi h. Emi i i i min rain

x4  (0, 0, 0, 8, 0) 7 6 24 3 _ 3 3
X1 or x3  (0, 0, 1, 4, 4) 8 6 30 3.3 4 3
x or x3  (0, 0, 2, 2, 4) 7 7 26 3.25 4 2.75

Hence, the maximum profile (and, incidentally, the minimum expected

testing cost) is incompatible with the minimum reverse profile, the

diagram storage cost, and the total, normalized, and worst case testing

costs. Secondly, let fb be the Boolean function of five variables given

by the formula:

fb(xl, x2, x3, x4, x5) = 1x5 + Xl1X 2X5 + x 2 x 5 * (x 3 x4 + x3 x4 )

+ (x 2 + x 5 )  (x 3 x4 + x3 x4 )

The trees with the maximum profile test x5 first, while those optimal

with respect to all other measures first test x., with the following

results:

first test profile min amin cmin Hmin hmin Emin

x (0, 0, 1, 1, 8, 4) 13 8 57 4.07 5 3.5
X5 (0, 0, 1, 2, 2, 12) 16 9 76 4.47 5 3.625
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Hence the maximum profile is also incompatible with the minimum tree

storage and expected testing costs.

The first function also shows that minimizing the tree or diagram

storage costs does not optimize any other criterion, while the second

demonstrates the same result about the minimum worst case testing cost.

Proposition 4.3. The normalized testing cost is incompatible with

any other measure except, possibly, the worst case testing cost; more-

over, minimizing the normalized testing cost may involve the introduction

of redundant tests.

Proof: Let f be the Boolean function of five variables given by
c

the formula:

fc(xl, x2, x3, x4, x5) = 1x2 + x2 9 x3  x4  5x5

where ) stands for summation modulo 2. The optimal trees for all measures

but H test x1 or x2 first and use no redundant test, while the trees with

minimum normalized testing cost may test any variable first and, in case

x or x2 is chosen, use redundant tests. Two diagrams rooted in x1 are

shown in Figure 4.2, the left being optimal with respect to all criteria

but H, for which the right diagram is optimal; the corresponding measures

are listed below:

tree profile amin n min H. h. Em mm min min mmn

left (0, 0, 2, 0, 0, 16) 17 8 84 4.6 5 3.5
right (0, 0, 0, 4, 0, 16) 19 9 92 4.6 5 4
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Figure 4.2. The two diagrams for the counterexample of
Proposition 4.3.

It is noted that the test of x5 as the right child of the root is

redundant. 0

The known relationships between measures are summarized in

Figure 4.3 (which incorporates a few results from unmentioned

counterexamples). These results disprove several conjectures or

assertions found in the literature. In particular, (Yasui 71)

claimed that the number of nodes of a tree is a special case of

the expected testing cost; this was reiterated as a conjecture in

(Breitbart 75a). That it is false can easily be seen by examining

the trees for the Boolean function of four variables given by the

formula:

f(x1, x2, x3, x4) X 1x2 + X 1x3 + x2x3x4
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Figure 4.3.. Known relationships between the eight measures

applicable to binary decision trees.
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Entries left blank in the diagram of Figure 4.3 stand for

relationships that could neither be proved nor disproved. It is

conjectured that these relationships, most particularly the implication

(min ==> a min), hold true. As for identification problems, the

introduction of nonuniform probability distributions or nonunity costs

renders all measures pair wise incompatible.

4.3.2. Uninteresting measures

From the preceding results, it clearly appears that the normalized

testing cost is unsuitable as a measure of complexity on decision trees.

Also, since the notion of leaf profile cannot be easily extended to take

variables of different costs into account, both the maximum and the

minimum reverse profiles are unsuitable. Finally, the tree storage cost

is not an accurate measure of the true hardware (or memory) requirements,

since the diagram storage cost is never larger and often much smaller.

(It is recalled that &(2n) tree nodes are needed in order to represent

any Boolean function of n variables, while 6(2n/n) diagram nodes suffice.)

Thus, the tree storage cost is rejected in favor of the diagram storage

cost.

Of the four remaining measures, three (n, h, E) are related to

problems of tree usage and one (B) to problems of implementation.

While the diagram storage cost certainly is the relevant measure of

implementation problems (except, perhaps, for the difficulty of its

optimization--not known to be polynomially feasible, whereas the tree

storage cost can be efficiently optimized), it appears as less



66

characteristic of the complexity of a function than measures of testing

costs. In particular, the storage cost is not as strikingly different

for decision trees (as compared with other models of functions) than the

testing costs; for instance, although it is an order of magnitude better

than Boolean formulae for logic functions--0(2n /n) versus G(2n/log n),

this remains small compared to the ratio for the expected testing cost--

0(n) versus 0(2 n/log n). Thus, the storage cost does not capture an

essentially new aspect of functions, while the expected testing cost

definitely does.

Finally, of the three measures of testing cost, only two (h and E)

are concerned with the performance of a tree representation. The total

testing cost does not make use of the probability distribution, yet

neither does it measure a performance extreme (as the worst case testing

cost). Although it is of interest in the case of binary identification

(since it is then a measure of the cost incurred in identifying one

object in each category, that is, in producing each output of the func-

tion exactly once), it does not, in general, correspond to practical

concerns that an engineer or designer might have about a function.

This leaves two measures of special interest, namely, the expected

and worst case testing costs, which are discussed in turn in the next

sections.

4.3.3. The worst case testing cost

As mentioned in Section 3.4, (Rivest 76a, b) proved that almost

all Boolean functions are exhaustive, that is, have a maximal worst case
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testing cost. In this section, his argument will be reproduced and

further results presented. The worst case testing cost will then be

discussed in the light of those results.

Let f be a Boolean function of a variable and let Af denote the

set of all minterms of f, that is

U{X I ,  "'., IX n )  I f(x I '  .... I n  i}n

Let the weight of an input vector, w(xl, ..., x n), be the sum of the

components of the vector (i.e., the number of components that are equal

to one). In a decision tree representation of f, a leaf labelled 1 at

depth k represents 2n- k minterms (since n - k variables are unspecified);

in particular, if the tree has height h, then 2n -h divides I40.

Consider the generating function

n i
gf(z) I aiz, (4.3-1)

i-O

where ai is the number of minterms of weight i. Then

n
gf(l)- I ai -

i-O

A leaf at depth k contributes a summand z (1 + z) n - k to gf(z), where Z

is the weight of the k-subvector. (Since the remaining n - k components

are unspecified, each can take the value 0 or i, corresponding to thp 1

n-k
and the z in the term (1 + z)n.) Thus a tree of height h has each leaf

n-hlabelled with a 1 contributing a multiple of (1 + z)
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Lemma 4.1. If the worst case number of tests for i function f

is h, then (1 + z)n-h divides gf(z). 2

As a special case, setting z - 1 gives the result stated above, that is,

2n-h divides 1A1. Now, letting z = -1 yields gf(-l) = 0 for h < n, so

that the sum of the odd power terms is equal to that of the even power

terms.

Lemma 4.2. Any Boolean function which is not exhaustive has an

equal number of odd and even weight minterms.

But now, the number of Boolean functions of n variables with an equal

number of odd and even weight minterms is

2n-l I-\ n
J *n - 0 2 - 2 n i , (4 .3-2)

2
n

which, for large n, becomes approximately 2 2  • 2n-1 (Knuth 73, p. 71).

Since the number of nonexhaustive Boolean functions must be less than

n) by Lemma 4.2, and since there are 22n Boolean functions of n

variables, the fraction of all Boolean fractions that are nonexhaustive
2n

must be less than X(n)/2  . But, for large n:

n n-n

lim X(n)/22n - ii. (2- lim 1/.? 2n  - 0
n-.. n-.€ n,. o

(4.3-3)

which proves the following.
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Theorem 4.1. Almost all Boolean functions are exhaustive.

The above theorem is the announced result from (Rivest 74).

It is natural to suspect that there exist large groups of exhaustive

functions. It will now be shown that symmetric and threshold functions

are exhaustive.

A Boolean function of n variables, f(xl, ..., xn), is said to be

symmetric if and only if, for each permutation, a, over n letters:

f(X .,X ) = f(xI, .... x)

Equivalently, a function is symmetric if and only if there exists a set

of k numbers (k < n), {al, ... , a } where 0 < a < ... < ak .n, such

that the function is equal to one exactly when a. of its variables are1

equal to one, for some i, 1 < i < k. Such a function has a single tree

structure, since testing one variable rather than another does not change

the resulting subfunctions; in particular, after testing n - a1 variables

and finding them all equal to zero, the remaining a1 variables must all

be tested, since the function will be equal to one if all are equal to

one. This proves the following result.

Theorem 4.2. All symmetric Boolean functions are exhaustive.

Let P be the defining property of a class of functions such that,

if f possesses P, then both f(xiu0) and f(xiwl) possess P, for any

choice of xi; in other words, P is preserved by Shannon's decomposition.

All functions in the class are then exhaustive if and only if they have

no redundant variables and, in any Shannon's decomposition, at least

one of the two subfunctions has no redundant variables.
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A class of functions of considerable interest is that of unate

functions, that is, functions for which a Boolean formula can be

written which uses no variable in both complemented and uncomplemented

form. Since decision trees are invariant under complementation of

variables, it can be assumed without loss of generality that all

variables are used uncomplemented; this defines the class of positive

unate functions, which can be shown to be monotone increasing

(Harrison 65). Both properties are clearly preserved by Shannon's

decomposition.

Let then f(xI , ..., x ) be an intrinsic positive unate function;
1' n

from the above, f is exhaustive if and only if, for each choice of x,

either f(xi=O) or f(xi.1) is intrinsic, that is, there cannot be found

xj, xk (j, k 0 i) such that f(ximO) does not depend on x and f(xi=l)

does not depend on xk . Without loss of generality, let i = 1, j = 2,

and k = 3, and let x stand for (x 4 .... , x n). Then f is not exhaustive

if and only if

f(O, 0, x3 , x) - f(0, 1, x3 , 2)

and

f(l, x2, 0, X) - f(l, x2, 1, X) . (4.3-4)

Since f is monotone increasing, it must be the case that

f(l, x2, 1, x) f(0, 0, x3 , I)
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so that, by topological sorting, the following relations are obtained:

f(l, 1, 1, x) = f(l, 1, 0, x) > f(l, 0, 1, x) = f(l, 0, 0, x)

> f(O, 1, 1, x) = f(O, 0, 1, x)

> f(O, 1, 0, x) = f(O, 0, 0, x) . (4.3-5)

Let the four pairs of function points in (4.3-5) be denoted a, b, c, and

d in this order. For any given choice of x, these four pairs can be

mapped to the same value or to two distinct values (0 and 1), with the

following partitions:

(1) (abcd) mapped to the same value; then xl, x2, and x3 are redundant

for that choice of x;

(2) (abc) mapped to 1 and (d) to 0; then x2 is redundant for that choice

of x;

(3) (ab) mapped to 1 and (cd) to 0; then x2 and x3 are redundant for that

choice of x;

(4) (a) mapped to 1 and (bcd) to 0; then x3 is redundant for that choice

of X.

No other choice is possible due to the monotone property. This shows

that all unate functions of three or less variables are exhaustive,

since then there is no choice for x and one of C1)-C4) must hold,

contradicting the assumption of intrinsicalness. At the same time,

however, it shows how to construct a nonexhaustive unate function of four

variables: it is enough to find x' > x" such that f(x1 , x2, x3, x) is

partitioned according to (2) and f(xl, x2, x3, x-) according to (4),
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since then x2 is redundant in one case and x3 in the other, but both are

necessary overall. One such function is given by the formula

f(xI , x2 , x3 , x4) = Xlx 2 + XlX 4 + x3x 4

and it is easily verified that it has tree representations of height 3.

Thus, not all unate functions are exhaustive, but what of a more

restricted class? A special case of unate functions is that of threshold

(or linearly separable) functions, where a Boolean function of n

variables, f(xl, ...I xn), is a threshold function if and only if there

exist a set of weights, (wl, ..., wn), and a threshold, T, such that

f(x1 , ..., xn) is one exactly when

n
Swx, > T

i= i

Since unate functions can be taken to be positive, weights and threshold

are assumed positive without loss of generality. Let now w stand for

(w4, ..., w n); substituting weights and threshold into the four pairs

of (4.3-5) yields:

a w +w + w*xt; w +w +w +w.xt
1 2 1 2 3 2L

d- (w-xi w 2 + x
t  , 1

t
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where xt stands for the transpose of x. As seen above, a function will

not be exhaustive only if x' > x" can be found such that f(xl, x2, x3, )

is partitioned as (abc)(d) and f(x, x2 1 x 3, 2i") as (a)(bcd). Using

only boundary values around the threshold, this implies, for the first

partition:

w1 +w 2 + w-xt > T, w 1 + w3 + wx < T, w2 + w3 + wxt < T

and for the second:

w x3 + w -> 1 + w x > T, w2, + w*x" < T

The first three inequalities yield w2 > w3 and the second three yield

w2 < w 3, a contradiction. Hence x' and x cannot be found, which proves

the following.

Theorem 4.3. All linearly separable functions are exhaustive. L.

The above results show that the worst case testing cost does not

discriminate between most Boolean functions. Thus, although it can be

efficiently minimized [the dynamic programming algorithm of (Bayes 73)

can be applied], the worst case testing cost must be rejected as a

measure of the complexity of decision trees.

4.3.4. The expected testing cost

By successive eliminations, then, the expected testing cost, E, is

selected as the most representative measure of the complexity of decision

trees. This section establishes a few simple results about this measure

and examines the complexity of its optimization.
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Given an intrinsic Boolean function of n variables, f(xI  ..., Xn

where testing variable xi incurs cost ci, and given a probability

distribution, p, on the input combinations, the expected testing cost

of any tree representation, T, of f is obviously bounded by:

n

min {c. I i = 1, ... , n) < E(T) < _ c. (4.3-6)
1 il

In particular, if p is uniform and all the costs unity, then:

n/2 n  i/2 i = 2 - 2 - ( n l < E(T) < n.

i=l1

In fact, Boolean functions with unity costs and uniform probability

distributions require an expected number of tests that converges to n;

this can be shown as follows. Let F(n) be the number of Boolean functions

of n variables and let I(n) be the number of those that are intrinsic;

thus:

n
F(n) - 22

and

n

I(n) - n (n-iF()
i-0

As remarked in Section 2.2.1, almost all Boolean functions are intrinsic,

that is:
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lim l(n)/F(n) = 1
n-w

with rapid convergence. Now, the expected value of E for a function of

n variables, E(n), must be at least as large as E(n - 1) for nonintrinsic

functions and equal to 1 + E(n - 1) otherwise; hence the recurrence:

E(n) > F(n) - I(n) , E(n - 1) + I(n) 1 + E(n - 1) ]/F(n)

= E(n - 1) + I(n)/F(n) . (4.3-7)

Since I(n)/F(n) rapidly converges to 1 (for n = 4, it is already within

two percent), the expected value of E is essentially equal to n for

large values of n.

The above result, however, does not indicate that minimizing the

expected testing cost is useless, since the presence of nonuniform costs

and probabilities results in the wide range of values described by

(4.3-6). Moreover, as seen in Section 3.3, this minimization can be

accomplished very efficiently by dynamic programming--in time

9(sI~g2 3 . log s) for an input of size s = &(2 n). This result has

often been misinterpreted, most recently in (Standish 80, p. 176), by

taking n as the input size and declaring the algorithm to be exponential

time since it requires &(n 3n
- l ) operations. An exception is the

case where the probability distribution is only incompletely specified

and the function itself given by its minterms or by a simplified formula

(as in decision tables where probabilities are specified only for--not

necessarily simple--rules), resulting in an input, the size of which may

be polynomial in n. In that case, however, there is no properly optimal
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tree (because the expected testing cost cannot be computed exactly, but

can only be bounded) unless the combinations grouped in a single

probability assignment are assumed equally likely, in which case it is

conjectured that the optimization problem is NP-hard (and thus

NP-equivalent, since it is clearly NP-easy).

4.4. The General Case

In the general case, the function given may be partial only. Then,

even in the case of Boolean functions with unity costs and uniform

distributions, no two measures are compatible (except, possibly, the

external path length and the number of nodes: the implication

min => amin could neither be proved nor disproved, although it is

clearly false with arbitrary costs or probability distributions). The

reasons enounced in the previous section for choosing testing costs

rather than storage costs as measures of the complexity of decision

trees remain valid, as does the selection of the expected testing cost

over the other measures of testing cost.

The dynamic programming algorithm for the minimization of the

expected testing cost is applicable to the general case, so that the

complexity of optimizing E is polynomial when the probability distribution

is completely specified, and probably NP-equivalent when inputs are

assumed to be equally likely and the function is partial. A further

study of the expected testing cost will be presented in the next chapter.



CHAPTER 5

ACTIVITY OF A VARIABLE

5.1. Introduction

In the previous chapter, the expected testing cost was chosen as the

measure of complexity for decision trees and diagrams. This does not

imply that the minimum expected testing cost for a function should be

chosen as a measure of that function's complexity; for instance, such

a measure would not be implementation-independent. It does mean,

however, that the relationship between a function and the expected testing

costs of its decision tree representations must be investigated. In

particular, as pointed out in Chapter 1, a characterization of the

influence of individual variables on the measure is desirable.

The following sections develop such a characterization, the

activity of a variable, and show its relation to decision trees. The

concept is then extended to hierarchies of recursive relations and its

application to conventional problems (such as the heuristic construction

of suboptimal trees) and to the development of a measure of function

complexity is investigated.

5.2. Definition and Results

The contribution of any variable to the expected testing cost of a

tree varies between zero and that variable's testing cost. Clearly, a

redundant variable, although it may be used in a tree, is not a priori

expected to make any contribution since it need not be tested.

77
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Conversely, an indispensable variable, that is, one which, regardless of

the values of the other variables, must be tested in order to determine

the value of the function, is expected to contribute its entire testing

cost. Hence, an a priori measure of the influence of a variable on the

expected testing cost of any tree representation must vary between zero--

for a redundant variable--and that variable's testing cost--for an

indispensable variable.

Moreover, such a measure should be compatible with the decomposition

process characteristic of decision trees. That is, the measure on the

whole function should be related to that of the subfunctions in much

the same way as the expected testing cost is. This leads to the

following definition.

Definition 5.1. Given a (partial) function of n variables,

f(xl, ...,x n), where each variable, xi, takes on mi values and has an

associated testing cost of ci, and where the probability of an input

vector, (xi, ..., xn), is denof:ed p(x1 , ..., xn), the activity,

af(xi), of variable x. with respect to the function f is defined by the

two relations:

(a) 0< af(xi) <c

moreover, af(xi) - 0 if and only if x is redundant, and af(xi) - ci

if and only if x is indispensable;

(b) for any xj, J i
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Im -
af(xi) = p(x. = k) - af (x)0 3 (xj~k)

The second relation requires that the activity of a variable with

respect to a function be equal to the expected value of the activities

of that variable with respect to the subfunctions resulting from a

decomposition.

Exactly one function can satisfy Definition 5.1. This can be seen

by examining the case of functions of two variables. Let f(x1 , x2 ) be

such a function and let it be decomposed around x2. The resulting

subfunctions, f(x2'k) for k = 0, ..., m2 - 1, are functions of a

single variable, xI. Consequently, that variable is either redundant or

indispensable and thus, by Definition 5.1(a), its activity is either null

or equal to its cost. Hence, by Definition 5.1(b), the activity of x

with respect to f is

af(xl) - 1 p(x2 = k) • cI . c p(x2 = k)k k

where the sum is taken over all k such that f(xl, k) depends on xI. A

straightforward induction argument then completes the proof of the

following result.

Theorem 5.1. Exactly one function satisfies the definition of

activity:

af(xi) - ci " P(xI - ki, . . -1 = ki-' X 1  k

• x a k ci - p (xi)
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where the sum is taken over all values, k, ... , k i_, ki+, ... , kn '

such that, for some pair of values (vi, v2 ) of xi, f(ki, ..... k , vl,

ki+l, .... kn ) and f(kl, ..., k i I v2 P k i+1 .... , kn ) are specified

and different. LI
The quantity, pf(x ), will be called the probability that f is sensitized

to xi; it is the a priori probability that xi will be needed in testing

for the values of the function. Conversely, the a priori probability

that x. will be useless, 1 - pf(xi), will be denoted p (xi).

As defined above, the activity is a generalization of a concept

developed from Boolean calculus in (Bozoyan 75). When the function is

a completely specified Boolean function, the activity can be written as

af(x) =ci p

where af/x i is the Boolean difference of f with respect to x.. [For

details on the Boolean difference, see (Thayse 73).] If it is further

assumed that the probability distribution is uniform, then the activity

can be expressed as

af(xi) ci " f(xi)/2

where tf xi) denotes the Chow parameter of xi with respect to f

(Winder 71).

Since the activity of a variable is an a priori measure of its

contribution to the expected testing cost, the difference between the



81

actual contribution and the activity is a measure of the loss incurred

by testing the variable. In particular, if the variable is tested at

the root, its actual contribution is equal to its testing cost, so that

the loss incurred becomes

Zf(xi) = ci - af(xi) = ci - ci • p(x) = ci. (x

Example 5.1. Let f be the partial function of Example 2.10, given

by

f: (0, 0, 0) a (1, 0, 0) a (2, 0, 1) -b

(0, 0, 1) - a (1, 0, 1) b (2, 1, 0) + a

(0, 1, 1) * c (1, 1, 0) c (2, 1, 1) -b

p: (0, 0, 0) -, 0.00 (1, 0, 0) - 0.10 (2, 0, 0) -,-0.00

(0, 0, 1) - 0.05 (1, 0, 1) - 0.05 (2, 0, 1) - 0.20

(0, 1, 0) - 0.00 (1, 1, 0) - 0.10 (2, 1, 0) - 0.10

(0, 1, 1) - 0.10 (1, 1, 1) - 0.15 (2, 1, 1) - 0.15

and the testing costs, cI - 5, c2 = 3, c3 - 2. The probability of f

being sensitized is computed for each variable as follows:

p(x I ) - p(x2 - , x3 - ) + p(x 2 -l, x3  0 0) + p(x 2 -1, x3  1)

- (0.05 + 0.05 + 0.20) + (0.00 + 0.10 + 0.10)

+ (0.10 + 0.15 + 0.15) - 0.90

Pf(x2 ) - p(x1 - , x3 -1) + p(x 1 -1, x3 -0)

- (0.05 + 0.10) + (0.10 + 0.10) - 0.35
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pf(x 3 ) = p(x I = 1, x2 = 0) + p(x I = 2, x2 = 1)

= (0.10 + 0.05) + (0.10 + 0.15) = 0.40

Then the other quantities defined above are:

pf(x 1 ) = 0.10, pf(x 2 ) = 0.65, Pf(x 3 ) = 0.60

af(xl) = 5 • 0.90 - 4.50, af(x2) 3 0.35 = 1.05, af(x 3) 2 • 0.40

- 0.80

Zf(x I) 1 0.50, Zf(X2 ) = 1.95, Zf(x3 ) 1.20

The concepts of activity and loss are closely related to the

expected testing cost. As observed above, each variable makes a minimal

contribution equal to its activity; then a loss is added each time the

variable is tested. This relationship is formalized below.

Theorem 5.2. The expected testing cost, E(T), of a decision

tree, T, for the function f can be expressed as

n
E(T) - I af(x i ) - (fk f (xk)

i=l k k

where the second sum is taken over all internal nodes and xk and fk

refer to the variable and the subfunction associated with the k-th node.

Proof: The proof is by induction on n, the number of variables.

For n - 1, the basis is easily verified: the variable space is just
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an m-tuple and there are only two possible tree structures. Assume

that the theorem holds for all functions of up to and including n - 1

variables and choose x. to be the root of T. This determines m.

subfunctions, each of n - 1 variables, so that the inductive hypothesis

applies and, for each subfunction f (xiMV, J - 0, ... , m i - i, with

corresponding tree T, the expected testing cost can be written as

n

k(i 1. a5 x)+iPf(ij )-i x6
k=1 (xi--j ) s (X i=j) s
k~i

where the second sum is taken over all internal nodes, s, of T . But,

m.-i

E(T) = c.i + p f(f,=)\ E(T)j=O i

and, upon substitution, this becomes

m 11
s (xi=j) 

si
+ I P ( f kk  f (xk) 5

kk

where the last sum is taken over all internal nodes, k, of T. However,

the following relations obviously hold:
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m.-i

Z af(x) = af(xi) + Z Pf(x=J) I f af( (xs
j=l j=O =1 (x

and

ci - f (xi) = a f(xi )

Substitution of those two equalities in the expression for E(T) yields

the conclusion. 11

A simplified form of this theorem was proved in (Breitbart 75b), using

Chow parameters, for completely specified monotone Boolean functions

of uniformly distributed variables with unity costs.

Corollary 5.1. The expected testing cost of any decision tree, T,

for the function f having x. as root test is bounded by1

n n
c i < E(T) < Zf(xi) + [ af(xj) .j=l j-I

This corollary, in simplified form, was proved in (Reinwald 66) and is

implicit in (Breitbart 75b). Both references use it as the basis for a

branch-and-bound search algorithm to find a tree with minimal expected

testing cost.

Those results stress the importance of the sum of the activities

of the variables as an implementation-independent measure of the cost

incurred in determining the values of a function. This motivates the

following definition.
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Definition 5.2. The intrinsic cost, I(f), of the function f is

the quantity:

n

l(f) = n af(xi)
i= 1

Example 5.2. Consider again the function of Example 5.1. Its

intrinsic cost is

I(f) = 4.50 + 1.05 + 0.80 = 6.35

From Corollary 5.1, the lower bound on the expected testing cost of any

tree can be computed for each choice of root:

lb(x I) = 6.35 + 0.50 = 6.85

lb(x 2) = 6.35 + 1.95 = 8.30

lb(x 3) = 6.35 + 1.20 = 7.55
3g

Theorem 5.2 is illustrated by considering the two trees of Figure 2.5

(page 31), which are reproduced in Figure 5.1 with the loss and

probability of each internal node. The expected testing cost of tree (a)

is then

E(a ) -6.35 + 1.00 • 0.50 + 0.15 • 0.00 + 0.40 • 1.50

+ 0.45 • 3.00 + 0.15 • 0.00 + 0.25 • 0.00 - 6.35 + 0.50

+ 0.60 + 1.35 - 8.80
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x =. 5x2 P .0x2 =.4

a b x3 p-0.15 b X3 p-0.
25

(a)

a x P-0. 20 PO0.l5 x 2  b b
Z00.00 X-0.00

(b)

Figure 5.1. The two trees for Example 5.2 with the probability (p)
and loss M~ at each internal node.
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and that of tree (b) is

E(b) = 6.35 + 1.00 • 1.20 + 0.30 • 1.00 + 0.70 - 0.00

+ 0.20 • 0.00 + 0.15 • 0.00 = 6.35 + 1.20 + 0.30 = 7.85

which are the values found in Example 2.10.

5.3. Extension to Recursive Relations

In this section, the concepts of decision tree and activity are

extended to relations, recursive relations, and hierarchies of relations.

This allows the modelling of systems with simple feedback loops, and

systems composed of several subsystems. In the case of decision tables,

this makes it possible to consider ambiguous tables, recursive tables,

and tables incorporating calls to subtables in place of accions (each of

which is beyond the reach of published analyses).

The extension to relations on finite sets is of particular interest

in the case of interdependent functions which must be represented by a

single tree [as in (Cerny 79)] and in the case of ambiguous decision tables

tables using the interpretation of (King 73).

A relation, R, from the set of input vectors to the set of output

values, might specify no more than one output for each input combination,

in which case it is a (partial) function; it may, however, specify more

than one output, in which case it can be arbitrarily decided to specify

any particular output or subset of outputs. For consistency of notation,

it will be assumed that an unspecified entry is in fact related to the

whole output set, so that any subset of output values may be specified
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for such an input combination. Such a relation car, obviously be

represented by decision trees and diagrams. Testing costs are defined

as for functions, and so are probability distributions. (Thus, the

distribution depends only on the input values and is unaffected by the

choice of one or another output subset.) The concepts of activity and

loss are then generalized in the obvious way by modifying the definition

of PR(xi), modification which results from the fact that two output

subsets specified by the relation are considered different if their

intersection is empty. It is readily verified that, under these

assumptions, all results previously stated for partial functions remain

valid for relations.

Example 5.3. Let R be the relation from the input set {O, 1, 212

x (0, 1} to the output set Q = (a, b, c, d}, where all three variables

have unity costs and the relation and the probability distribution are

given by:

R: (0, 0, 1) - (a} (1, 0, 0) - {b, d) (2, 0, 0) - {d}

(0, 1, 0) - (a, b, c} (1, 0, 1) - {b} (2, 0, 1) - {b}

(0, 1, 1) - {a} (1, 1, 0) - (b, c, d} (2, 1, 0) - {c}

(1, 1, 1) - {a} (2, 1, 1) - c}

p: (0, 0, 0) - 0.05 (1, 0, 0) - 0.10 (2, 0, 0) - 0.00

(0, 0, 1) -, 0.10 (1, 0, 1) -, 0.10 (2, 0, 1) -, 0.05

(0, 1, 0) - 0.10 (1, 1, 0) - 0.10 (2, 1, 0) -' 0.05

(0, 1, 1) - 0.20 (1, 1, 1) - 0.05 (2, 1, 1) -' 0.10



AD-A114 970 TENNESSEE UNIV KNOXVILLE DEPT OF ELECTRICAL ENGINEERING F/G 12/1

THE REPRESENTATION OF DISCRETE FUNCTIONS BY DECISION TREES,(U)

FEB 82 R C GONZALEZ, M G THOMASON, B M MORET N0001 -78--0311
* I TR-FF/CS-82-20 NLmIIIuIuIIIuuu
IEEEIIIIIIIIIE
EllEEllEllEJ





89

Since all variables ha4e unity costs, aR(x.) = pR(X ), so that:

aR(x I ) - p(x 2  0, x3 - 1) + p(x 2 - 1, x3  1)

= (0.10 + 0.10 + 0.05) + (0.20 + 0.05 + 0.10) - 0.60

similarly, aR(x2) 0.35 and aR(x3) - 0.20. Hence, the intrinsic cost is

I(R) = 0.60 + 0.35 + 0.20 - 1.15 .

Choosing x3 as the root test for a decision tree results in a lower

bound on the expected testing cost of 1.15 + (1-0.6) 1.55. A possible

decision tree, T, rooted in x3 is shown in Figure 5.2 together with the

losses of its nodes. Its expected testing cost is

E(T) - 1.15 + 0.35-4/7 - 1.75

and it is in fact one of the optimal trees for R.

As a further extension to the foregoing concepts, the case of

recursive functions or relations is now considered. A recursive

relation is a relation that, for certain input vectors, does not specify

output values, but calls for a new evaluation of itself. In the

following discussion, it is assumed that an unspecified entry can only

be replaced by a subset of output values (not by a recursive call). This

allows the computation of the probability, e, that an evaluation will be

made without recursive calls; if e is one, then the relation is not

recursive, while if e is zero, then the relation will never yield a

value, but will keep issuing recursive calls ad infinitum.
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k=.4

Z=4/7 Z=O

b a d =0

Figure 5.2. The decision tree of Example 5.3 with the losses of
its nodes.

A recursive relation can be represented by an infinite decision

tree, where each recursive call leads to the root of a new component

tree; it will be assumed that all component trees have the same

structure. Under this assumption, it is also possible to represent

a recursive relation by a diagram with cycles, each cycle leading back

to the root of the diagram.

A first question about such representations concerns an upper bound

on their testing cost. Such a bound was set by Corollary 5.1 for

nonrecursive relations as the sum of the testing costs of the variables,

but can evidently be passed by recursive relations. The following

proposition provides the answer.

Proposition 5.1. Let R be a recursive relation on n variables,

X ... ,X, with costs cl, ... , cn, and let e be the probability that

no recursive call will be needed; then the expected testing cost of

any representation of R is no larger than
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n
(l/e) • c.

Proof: The probability of a recursive call occurring in any

evaluation is (1 - e); an evaluation results in, at worst, the test

of all variables, for a cost of

ci

thus the total cost is no larger than

k n n(1 - e )k  c ci - (1/e) c ci .
k-O isl i=l

The actual cost of a tree representation can be computed by solving

a simple first degree equation; the probability that the relation will

take on a specific value can be obtained from a similar equation, with

the provision that entries for which several values are specified are

set to the specific value under consideration wherever possible.

The activity is generalized to recursive relations by re g its

computation for relations on one variable as follows. If the rela. a

is not recursive, the activity is that defined previously, otherwise, it

is equal to the product of the variable's testing cost times the

probability that the relation will take on more than one value. This

quantity will be called the tree activity; the corresponding loss, the

tree loss, is equal to the testing cost of the variable minus its tree

activity. The same quantities multiplied by (i/e) will be referred to

as the diagram activity and diagram loss.
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Theorem 5.3. Let R be a recursive relation and let a decision

procedure for F be represented by a diagram, D, and by an infinite

tree, T. The expected testing cost of the procedure, E(D) = E(T), is

equal to (a) the sum of the diagram activities and that, taken over all

internal nodes of the diagram, of the diagram losses, or (b) the sum,

taken over the infinite tree, of the tree activities and of the tree

losses.

Proof: The proof relies on that of Theorem 5.2 and on simple

2
considerations on the series 1, (1 - e), (1 - e) , .... and its sum,

lie. If, in the diagram, D, all recursive calls are replaced by leaves,

the cost of the resulting tree is the sum of the tree activities and

that, taken over all internal nodes of the tree, of the tree losses.

Introducing recursion (either as a diagram or as an infinite tree)

results in a series of invocations, the probabilities of which are

described by the series (1 - e)k.

Corollary 5.1 is similarly extended.

Finally, all of the above results can easily be extended to

hierarchies of (recursive) relations by analyzing a hierarchy component.

by component and putting the results together using the probability of

each component. It is noted, however, that the results are not directl.,

extendable to indirect recursion (that is, through a chain of relations)

unless all recursive calls are to the same relation at the top of the

hierarchy. This latter case is now demonstrated along with the other

extensions in a practical example.



93

Example 5.4. Consider a situation in which a monitoring program

must periodically evaluate several system variables. If the sampled

values point to a satisfactory status, the program waits for a specific

period of time and examines the variables again. Otherwise, either a

malfunction is detected and the program takes some action and stops, or

further analysis is required and additional variables are examined to

determine whether the program should resume its normal cycle or take

some action and stop. The first part of the examination (the normal

cycle) is described by the relation RI, which includes calls both to

itself and to the second relation, R2 (the exception cycle), which

includes calls to R1 (thereby producing indirect recursion).

In this simple example, RI is a relation between {O, 1, 2)

X (0, 1}2 and the set of actions, a = fa, b], and R2 is a relation

between (0, 1}3 and Q, as specified below, together with the probability

distributions, p1 and P2. The variables will be denoted xl, x2 , and x3

for Rl, and yI, Y2, and Y3 for R2; their testing costs are listed below.

RI: (0, 0, 0) - f{R} (1, 0, 0) -{RlI} (2, 0, 0) - {b}

(0, 0, 1) (R} (1, 0, 1) - fa} (2, 0, 1) -{R2}

(0, 1, 0) - Rl} (1, 1, 0) - {Rl} (2, 1, 1) - f{R2}

(0, 1, 1) - {Pl} (1, 1, 1) - f{R2}

pl: (0, 0, 0) - 0.70 (1, 0, 0) - 0.05 (2, 0, 0) - 0.01

(0, 0, 1) - 0.05 (1, 0, 1) -" 0.01 (2, 0, 1) -" 0.01

(0, 1, 0) -0.05 (1, 1, 0) -0.04 (2, 1,0 ) - 0.01

(0, 1, 1) - 0.05 (l, 1, 1) - 0.01 (2, 1, 1) - 0.01
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R2: (0, 0, 0) {Rl} (1, 0, 0) +(R1}

(0, 0, 1) -{b} (1, 0, 1) {a}

(0, 1, 0) {a} (1, 1, 0) -(a}

(0, 1, 1) -- {b}

P2: (0, 0, 0) " 0.25 (1, 0, 0) 
- 0.25

(0, 0, 1) -+ 0.10 (1, 0, 1) -+ 0.10

(0, 1, 0) -+ 0.10 (l, 1, 0) -+ 0.10

(0, 1, 1) -+ 0.05 (1, 1, 1) -+ 0.05

c(x 1 ) = 4.5, c(x2) = 9, c(x 3 ) = 9, c(yI ) = 50, c(y2) = 45, c(y3 ) = 36.

The analysis treats R1 and R2 separately and considers a structure

from which all recursive calls have been removed. Once this structure

has been analyzed by the methods developed above, the results are put

together using p(R2), the probability that R2 is called from RI in a

given evaluation. Recursion is then taken into account by multiplying

the results by (l/e), where e is the overall probability that no

recursion will be needed.

p(R2) is found to be 0.01 + 0.01 + 0.01 = 0.03; similarly, p(Rl),

the probability that R1 will be called in a given evaluation of R2 is

equal to 0.25 + 0.25 = 0.50; finally, the probability that no recursive

call will be needed is the probability of directly reaching a value in

Ri or through a single call to R2:
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e - 0.01 + 0.01 + 0.01 + p(R2) • (0.10 + 0.10 + 0.10 + 0.05

+ 0.05 + 0.10) = 0.045

The maximum probabilities of a relation yielding a value can then be

computed:

p(Rl - a) = (0.01 + 0.01 + p(R2) • (0.10 + 0.10 + 0.10

+ 0.05)) • (l/e) - 0.67 ;

p(Rl -b) = (0.01 + 0.01 + p(R2) - (0.10 + 0.05 + 0.05)) • (l/e)

= 0.57;

p(R2 - a) = 0.10 + 0.10 + 0.10 + 0.05 + p(RI) • p(Rl = a) - 0.68;

p(R2 = b) = 0.10 + 0.05 + 0.05 + p(Rl) • p(Rl = b) = 0.48

The tree activities are:

aRl(xl) - c(x 1 ) (0.76 • p(Rl 0 b) + 0.07 + 0.07 + 0.07 + 0.10)

- 2.524

Rl (X2) - €(x2) • (0 + 0 + 0.02 • p(R2 0 b) + 0

+ 0.02 • p(R2 0 a) + 0) - 0.148

a l(X3) - c(x3) • (0 + 0.06 • p(R1 # a) + 0.02 • p(R2 # b)

+ 0 + 0.05 + 0) - 0.716
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Similarly, 1R2(YI ) = 10, aR2 (y 2 ) 10.15, and aR2 (y 3) 14.78. Thus,

the intrinsic cost of the relations, I, is the sum of the tree activities

of R1 and of the tree activities of R2 (weighted by p(R2)) times the

recursion factor, l/e:

I = (2.524 + 0.148 + 0.716 + p(R2) • (10.00 + 10.15

+ 14.78)) • (l/e) = 98.575 .

The upper bound on the expected testing cost, as given by Proposition 5.1,

is

Cmax = (4.5 + 9 + 9 + p(R2) * (50 + 45 + 36)) - (l/e) - 587.5

Figure 5.3 shows a possible decision diagram, D, for the relations;

the lower bound for the cost of this diagram is the sum of the intrinsic

cost and of the diagram loss of xl:

lb(D) - 98.573+ (4.5 - 2.524) • (l/e) = 142.486.

The cost of the diagram, E(D), can be computed from Theorem 5.3(a) using

the diagram losses and probabilities associated with the nodes:

E(D) - 98.575+ 1.00 - 43.91+ 0.11 - 73.93+ 0.04 • 148.8

+ 0.02 - 137.7 + 0.02 • 97.7 + 0.02 • 200

+ 3 • (0.01 471.5 + 0.007 • 677.7 + 0.003 • 370.370)

- 197 ;
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it can also be obtained by solving the linear equation expressing the

cost in terms of itself:

E(D) - 1.00 * 4.5 + 0.85 - E(D) + 0.11 • 9 + 0.04 • 9 + 0.04 9

+ 0.09 • E(D) + 0.02 • 9 + 0.02 • 9 + 0.02 • 9

+ (0.01 + 0.01 + 0.01) • 36 + (0.007 + 0.007 + 0.007) •45

+ (0.003 + 0.003 + 0.003) - 50 + (0.005 + 0.005

+ 0.005) - E(D)

yielding

(1.00 - 0.955) - E(D) = 8.865

so that E(D) = 8.865/0.045 - 197. El

5.4. Applications to Selection and Other Problems

As mentioned above, a simplified version of activity has been used

as the basis for a branch-and-bound algorithm to find the tree with

minimal expected testing cost (Reinwald 66, Breitbart 75b); both

references pointed out that the same algorithm without backtracking was

a fast, albeit suboptimal, heuristic procedure, but failed to provide

an analysis of its performance.

The same algorithm is easily generalized to the case of recursive

relations; it consists of the following selection rule: when developing

the decision tree for the subfunction f, choose as the root the variable

with the lowest loss, Zf; in the case of tie, choose the variable with

the lowest cost; if a tie subsists, choose any variable. The use of the
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loss as a selection criterion is consistent with the requirements set

forth in (Ganapathy 73). As a selection criterion, the loss has several

advantages over similar criteria [such as found in (Pollack 65,

Verhelst 72, Halpern 74a, Breitbart 75a)]: it is simplex to compute,

more general, and optimal in several cases.

In particular, the loss criterion will always lead to the selection

of an indispensable variable (since such variables have a loss of zero

by definition); such a choice is easily seen to be optimal (Ganapathy 73).

Also, the lower bound of Corollary 5.1 is exactly the expected testing

cost when the relation is on two variables or less; it follows that the

loss criterion is optimal for all (recursive) relations on two or less

variables.

However, like any other method relying on local optimization, the

loss criterion can lead to pessimal solutions. The following example

illustrates the worst case behavior of the loss criterion for completely

specified Boolean functions with unity costs.

Let f be the Boolean function given by the formula

n
f - x1 + Q) xi

i-2

where denotes summation modulo 2, and assume the following probability

distribution:
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n
each input vector satisfying x1 • 8 x. = 1 has probability

i=2

y - E, for y < 1, y = 1 ;

each input vector satisfying x1 = 0 has probability E

all other input vectors have probability c = 22 -n - (y + 2)'E

Then the activity of x is

af(x1 ) = 2 n- (y + 1)•

and that of any other variable, xi, is

n-I
af(x i  2

so that k.ff(xi) < if(Xl). The two subfunctions resulting from the choice

of some xi, i 0 1, as the root test are again of the form x1 +(®xj, so

that the trees constructed by the loss criterion test variable x last

of all (on half the branches, the others ending in a leaf at depth n - 1)

and have cost:

E(T) = n - 1 + 2 n-2.(y + i).,

while the optimal trees test xI first and have cost:

E(T) 1 + (n - l).2n-l'C
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(The case n - 4 is illustrated in Figure 5.4.) Thus, if e << 1, (e.g.,

if e = 2-kn for some k > 1), the asymptotic ratio of costs becomes

C(T)/C(T) n - 1

By letting every point satisfying

n
xI  (D xii=2

be mapped to a recursive call, the worst case for completely specified

recursive Boolean functions is obtained. In that case, the best diagram,

Dot has a cost of (1 + (n - l)'2 n-l''/(l - 2 n-2") while the diagrams

constructed by the loss criterion, D, have a cost of n/(1 - 2 n-2.E);

thus, the asymptotic ratio, E(D)/E(D ), becomes approximately n for

small E. (That both recursive and nonrecursive cases yield the same

worst case, 0(n), is due to the fact that the recursive factor, l/e,

is independent of tree structure and gets factored out in the ratio.)

In this example, however, the lower bound set by Corollary 5.1

remains arbitrarily close to the optimal cost, since:

lbf(xi) = 1 + (n - 2).2n-l.c + 2n-2. (Y + l)'C, i 1

so that E(T ) - lbf(x - 2
n- 2 . (1 - y) • E = 0. Thus, the pessimal

behavior of the loss criterion could be detected at an early stage in

the construction of the tree and the selections revised. This is not to

say that the lower bound set by Corollary 5.1 always remains close to
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(a)

y. - C y, y. C

(b)

Figure 5.4. The two trees, with their leaf probabilities, for the
worst case performance of the loss criterion when n = 4: (a) the optimal
tree, T , and (b) the pessimal tree, T.

o2
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the optimal expected testing cost: it is easy to construct an

identification problem with n binary variables of unity cost and 2
n - 1

equally likely objects so that the lower bound is always 1 while the

optimal cost is n - 1 (it is enough to have each object characterized by

a combination of test values, the sum of which is equal to 1 modulo 2).

It must be noted, however, that there is little use for any

selection heuristics, since an equally efficient optimal algorithm is

available [the dynamic programming algorithm of (Bayes 73, Schumacher 76)],

which can easily be extended to apply to recursive relations.

Nevertheless, a selection criterion may be useful in that it indicates

the importance of individual variables; in particular, the activity has

potential applications as a measure of complexity (further investigated

in the next section), as a tool for system testing (which application is

the subject of Chapter 6), and as a gauge of the power of discrimination

of a variable in data base queries, pattern recognition, and other

decision problems.

5.5. The Intrinsic Cost as a Measure of Complexity

As indicated in Chapter 1, current measures of the complexity of

discrete functions are not entirely satisfying, mostly because of their

dependence on some form of implementation. Thus, software science

(Halstead 77) studies the complexity of computer programs as perceived

by humans, combinational complexity (Savage 76, Pippenger 77) measures

the complexity of Boolean functions in terms of the number of gates in a

circuit or the number of terms in a Boolean formula, and even concrete
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computational complexity (Aho 74, Garey 79) uses a computer-like model

on which space and time measures are developed. Other measures [a

recent and succinct survey of which can be found in (Rouse 79)] are even

more specialized.

The pitfalls of an approach keyed to a particular mode of

implementation are vividly illustrated by a comparison between the

results of combinational complexity and those of (Lee 59), both about

Boolean functions. Combinational complexity is concerned with the

number of gates (each realizing one of the sixteen Boolean functions of

two variables) necessary to compute a function; for a function of n

variables, it is known that &(2n/n) gates are needed when subfunctions

can be regrouped, and &(2n/log n) when they cannot (as in representation

by unfactored Boolean formulae). Lee's results show that a function of

n variables can be represented with &(2n/n) nodes by a decision diagram;

this is equal to the necessary number of gates, but only &(n) operations

are needed in decision diagrams versus 9(2n/log n) in a combinational

network. This clearly indicates that combinational complexity is

inadequate as an implementation-independent measure of complexity and

that, moreover, decision trees and diagrams capture some essential

property of discrete functions that is not reflected in some other

measures.

Concrete complexity theory, as mentioned in Chapter 1, has made use

of decision trees in order to derive lower bounds on the computational

complexity of classes of problems. However, the approach taken

(measuring the worst case testing cost) is directly dependent on the
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decision tree model and, as seen in Section 4.3.3, the results are

mostly trivial since almost all Boolean functions are exhaustive.

In conclusion, then, a measure is desired which captures some of

the aspects of decision trees but does not directly depend on them. Such

is the intrinsic cost and its use as a complexity measure for discrete

functions is proposed here. The intrinsic cost is implementation-

independent; it is a lower bound on the cost of any type of evaluation

of a function. Being the sum of activities, it also lends itself to an

analysis of the influence of individual variables; similarly, since the

activity is compatible with the process of decomposition, the intrinsic

cost of subfunctions is readily computed from that of the given function.

Both properties are, of course, indispensable for a system design and

analysis tool.

Validating an applied complexity measure is a large undertaking,

beyond the present scope of this investigation. It is felt, nevertheless,

that the results available in the literature and presented in this work

justify the need for a complexity measure such as the intrinsic cost.

Further justification may be found in the close relationship between

activity and some problems of testing, which relationship is discussed

in the next chapter.



CHAPTER 6

APPLICATION TO SYSTEM TESTING

6.1. Introduction

Decision trees have been used by numerous researchers for purposes

of machine diagnosis (Hoehn 58, Bruli 60, LaMacchia 62, Chang 70,

Koren 77); in most cases, however, the tree is the specification of a

testing algorithm. More recently (Akers 78a, 78b) proposed to use

Boolean graphs (that he called decision diagrams) as representations of

Boolean functions in order to develop testing schemes. He also included

sequential systems by considering only their next state function and

using decomposition to the point where, it was reasoned, any given part

of the analysis encounters few next state variables.

A different method is adopted here. In keeping with modern system

architecture, in particular the use of large scale integration, it is

assumed that a system has many more internal variables than can

reasonably be controlled (or even examined) in a testing experiment.

The emphasis is placed on signal reliability (Koren 79), that is, a

measure of the probability that the system's output is correct, rather

than the conventional functional reliability, a more pessimistic measure

based on the probability that a system is fault free. Combinational

systems are first examined and a relation is established between the

activity of a variable and the probability of detecting a faulty output.

The results are then extended to sequential systems using a steady state

model. Finally, further applications are briefly discussed.

106
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6.2. Combinational Systems

A combinational system has no internal memory and is entirely

described by its output relation (according to the premises stated in

Chapter 1). Figure 6.1 illustrates such a system, F, with n input

variables and an output specified by a relation, R, on the input

variables.

xI  Combinational
System

F R(xI, ...9 xn)
:: Fn

Figure 6.1. A combinational system.

To test a newly produced or previously used version of F by

verifying its outputs while all input vectors are applied--a method

called exhaustive testing--is a task, the complexity of which grows

exponentially with the number of variables; accordingly, exhaustive

testing quickly becomes impractical. This has prompted the study of

alternate approaches, which do not guarantee the detection of every fault

(only exhaustive testing can), but minimize the probability that an error

will go undetected. In particular (Losq 76, 78) has shown that random

compact testing is effective for large scale systems realizing

combinational or sequential functions. In this method, all inputs are

controlled; a sequence of random input vectors is applied and output

statistics (such as the frequency of occurrence of each value) are
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gathered. The test statistics are then compared with the output

statistics of a perfect unit (the "gold unit") and the unit under test

is accepted as being in working order if its output statistics fall

within an "acceptance window" around those of the gold unit. (Losq 78)

showed that, when all faults are assumed to be permanent (i.e., lines

"stuck-at" a particular value), the probability of acceptance of a

faulty unit approaches zero as the test length increases and is very

small already for tests that are much shorter than exhaustive sequences.

In large systems in operation, it is not always desirable (or even

feasible) for a test generator to assume control of all input variables.

Several variables may be altogether unavailable (for instance, the

secondary variables of a sequential circuit) while the value of others

cannot be modified during operation. In such a case, one is reduced to

controlling a subset of the inputs and allow the others to vary. A test

consists then of an exhaustive application of all the combinations of

controlled inputs and a verification of the output for each input vector.

Permanent faults are assumed; since the system's implementation is

unknown, only input-output relationships can be observed and thus any

test will measure signal reliability. Specifically, a fault is assumed

to cause the system output to be stuck at a given value at a time when

a gold unit would produce a different result. Let the system, F, have

the output set, 0, and, in first approximation of the fault model, let

A, i = 1, ..., JIQ, be the event that a failure causes the system's

output to be stuck at the i-th output value. Since those events are
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disjoint, the probability, pet that the system's output is incorrect is

Pe =  p  Ai p p(Ai)
ii-i

If all events are equally likely, with probability p(A.) - 6, then

-Q * 6
Pe" n

and the probability, PC, that the output is correct is

PC = 1 - • 6

Now, let the set of controlled variables be composed of the single

variable, xi; the other variables are allowed to vary according to the

known probability distribution over input variable values. [Essentially,

the remaining inputs are assumed to arise from a zero-th order Markov

process (Parzen 62), in which each set of values is selected according

to fixed probabilities independently of preceding values.] The test

sequence accordingly consists of all mi values that xi can assume. An

incorrect output will be observed during the test exactly if either

(a) a fault is present and the relation is sensitized to xi, or

(b) the relation is not sensitized to xi but is stuck at a value other

than any that could correctly result from the remaining (n - 1)

variables' values.

These are disjoint events, the first occurring with probability
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Pa R( ) 1 Pe

and the second with probability

where the union is taken over all events, Ak, such that R(xk)nR(xj)

and the sum is taken over all combinations, C, of the remaining n - 1

variables such that R is not sensitized to x.. If R is a completely

specified function and the failure events are equally likely, those

probabilities become:

Pa R(X) =6

and

Pb P(Xi) (I[ I - 1) • 6,

so that the probability of observing an incorrect output by applying all

possible values of variable xi is

Pa + Pb "PR(Xi ) " ]  " + PR(Xi)• - •

+ pii) R
- j1 • * 6• (pR(Xi) + p (xi)) - 6• ~i

= I 6 - 6 • p (xi).
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Since p( + x aR(xi) when costs are unity, it follows that testing

that variable which has the highest activity (i.e., the lowest loss)

maximizes the probability of detecting an incorrect output value.

Theorem 6.1. Under the above assumptions, the probability of

detecting an incorrect output value, pd' obeys the following inequalities:

Pd(using the highest activity variable) >

Pd(using randomly selected variable) >

Pd(using lowest activity variable) . Lj

The above results extend in a natural way to controlling subsets of

k out of the n variables.

6.3. Extension to Sequential Systems

A sequential system incorporates memory. The standard model of a

discrete parameter system with memory distinguishes the memory unit and

the combinational subsystem, as illustrated in Figure 6.2. The system's

output is a relation on the primary (external) variables, xl, ..* n'

and the secondary (internal) variables, yI, ... Ym. [When the system

is Boolean, this model is known as a Mealy machine (Friedman 75).] It

is often the case in practice that the memory unit values, yI' -9 Ym.

are not directly controllable or even observable. For instance, the

limited number of pins available on packages for large scale integrated

circuits does not usually allow the allocation of any connections to the

secondary input variables. It is therefore assumed that only the primary
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Figure 6.2. The conventional model of a sequential system.

variables can be controlled, even for purposes of testing; further, it is

assumed that a fixed probability distribution over the vectors of values

of the primary inputs is known, which represents the normal operating

conditions of the system.

Since the system is discrete and finite, it can assume only a finite

number of states, one for each combination of values of the secondary

variables. The probability, piJ' of transition from state i to statej

can then be computed from the system's known relations and the

probability distribution of the primary variables. Thus, the system

can be considered as a Markov chain (Parzen 62, Booth 67), which is

irreducible (since every state can be reached from every other state) and

recurrent positive (since the system eventually returns to each state

with a probability of one). This is a stochastic process about which,

in particular, the following results are known.
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(a) There is convergence in Ce~aro mean to a vector of values that

can be interpreted as the probability distribution over the states in

the long run; that is, the i-th element, 7i, in that vector is the

fraction of time that, in the limit, the system spends in state i. The

elements of the vector can be computed by a set of linear equations of

the form

IT. 7 t * p.i i " ji
1 J

(b) Let N.(n) be the number of times that the Markov chain is in1

state i during its visits to the first n states; then this occupation

time of i is asymptotically gaussian with expectation n - 7 . and variance1

2 3 2n * O. " 7,i , where Oil is the variance of the random variable

describing the recurrence time of state i.

The first property implies that, in the long run, a fixed

probability distribution on the primary input values induces a fixed

distribution on the secondary variables' values (the states). This

allows the computation of the activities of the primary variables; long

run testing by controlling only the primary variables (and not letting

the test sequences alter the predetermined probability distribution) can

then be carried out in a way similar to the testing of combinational

systems described in the previous section, with the same results.

6.4. Discussion

The results presented in the previous sections are, of course, only

preliminary. In particular, the relationship between activity and the

I.
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probability of error detection must be worked out in the more general

case of nonuniform failure probabilities, and the fault model itself

must be validated.

As a first step toward the latter goal, it must be noted that the

fault model adopted in this chapter, which assumes that only inputs and

outputs (i.e., external signals) are observable, is better suited to

modern methods of system implementation, especially large scale

integration, than the conventional model of functional reliability.

Given a system implemented by a single very large scale integrated (VLSI)

circuit, the engineer is concerned about its proper functioning, that is,

a correct input-output behavior; if an error is detected, the whole

package is replaced: the nature of the problem inside the package is of

no con'ern.

When testing a combinational circuit "on the bench" (that is, not

in operation), all of the inputs are usually controllable, so that

testing only part of the variables may be an unnecessary restriction;

even if exhaustive testing is not permissible, random compact testing

can be used. While the latter is certainly indicated, there may yet be

reasons for which an exhaustive test of the variables with highest

activities would be preferred. In particular, such a test thoroughly

checks out the behavior of the system with respect to the most

"significant" variables; as such, a successful test indicates that the

functionally important parts of the system are in working order. A

measure of the extent of these parts is then the ratio of the sum of the
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activities of the exhaustively tested variables to the intrinsic cost of

the system.

This property has potential applications to the quality control of

VLSI circuits, where the yield of perfect circuits is often low. One

could conceive a test conducted on the most relevant variables in order

to guarantee that at least the important parts of the circuit are in

working order; those imperfect circuits that passed the test could then

be released for noncritical applications, rather than altogether

discarded. (This could lower the price of VLSI production; for further

recycling of costly products, the process could be coupled with limited

repair capabilities in order to bring more circuits within the

predetermined percentage of the intrinsic cost necessary for acceptance.)

Yet other applications are foreseeable. Clearly, however, a good

deal of prior research is necessary.

II



CHAPTER 7

CONCLUSIONS AND RECOMENDATIONS

The use of decision trees and diagrams as models of discrete

functions has been investigated. A general framework has been

elaborated, into which the diverse results available in the literature

have been brought. In particular, a complete analysis of the complexity

of optimization of decision trees has been presented, including several

new results on the worst case computational complexity of Boolean

functions. After a discussion of the various measures defined on

decision trees and diagrams, a single measure, the expected testing cost,

was selected as representative of the complexity of decision trees. This

measure was further examined in order to develop a measure of complexity

on functions. In particular, the concept of the activity of a variable,

a measure of the contribution of a variable to the testing cost of a

function, was introduced, and its relation to decision trees was

established. These concepts were shown to be applicable to recursive

relations and hierarchies of relations.

After a brief discussion of the applications of activity to the

construction of decision trees, its use as a complexity measure for

discrete functions was proposed and discussed. Finally, the application

of activity to problems of testing was examined, with particular emphasis

on the testing of large scale integrated systems in operation. Further

research is needed in order to validate the proposed measure of

116
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complexity and develop some specific characterizations. Although the

testing applications introduced in the previous chapter are of a

preliminary nature, they clearly indicate the potential of the concept

of activity for solving some of the acute problems encountered in

testing large systems.

wM.
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